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Abstract

Many situations require the need to quickly and accurately locate dismounted

individuals in a variety of environments. In conjunction with other dismount detec-

tion techniques, being able to detect and classify clothing (textiles) provides a more

comprehensive and complete dismount characterization capability. Because textile

classification depends on distinguishing between different material types, hyperspec-

tral data, which consists of several hundred spectral channels sampled from a contin-

uous electromagnetic spectrum, is used as a data source. However, a hyperspectral

image generates vast amounts of information and can be computationally intractable

to analyze. A primary means to reduce the computational complexity is to use feature

selection to identify a reduced set of features that effectively represents a specific class.

While many feature selection methods exist, applying them to continuous data results

in closely clustered feature sets that offer redundancy and fail in the presence of noise.

This dissertation presents a novel feature selection method that limits feature redun-

dancy and improves classification. This method uses a stochastic search algorithm in

conjunction with a heuristic that combines measures of distance and dependence to

select features. Comparison testing between the presented feature selection method

and existing methods uses hyperspectral data and image wavelet decompositions.

The presented method produces feature sets with an average correlation of 0.40-0.54.

This is significantly lower than the 0.70-0.99 of the existing feature selection meth-

ods. In terms of classification accuracy, the feature sets produced outperform those

of other methods, to a significance of 0.025, and show greater robustness under noise

representative of a hyperspectral imaging system.
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Distributed Spacing Stochastic Feature Selection and its

Application to Textile Classification

I. Introduction

The process used to locate something usually requires knowing certain aspects of that

thing. For example, if told to locate a specific box in a room full of boxes, it is

helpful to know the size, shape, or color of the target box. Limited knowledge of the

characterization aspects of that box reduces the possibility of a successful outcome.

More generally, the less information obtained about the target of detection, the greater

the difficulty in completing the objective.

This work focuses on textile detection in relation to the identification and lo-

cation of people. Detection of people, otherwise known as dismount detection, has

many applications. Some examples of this include: Search and Rescue, surveillance,

anti-camouflage, and target identification and tracking (Fig. 1.1). All of these areas

have civilian and military applications that would be enhanced by improvements in

passive identification of discriminating dismount characteristics.

Accurate detection of an object requires obtaining knowledge about that ob-

ject. The same is true for dismount detection. There are many methods of dismount

detection, and as many methods of avoiding it. Therefore, it is advantageous to

assemble as much information about a dismount as possible, in order to increase op-

portunities for accurate detection. Collecting information about a dismount’s physical

characteristics (height, weight, and hair color, etc.) can be useful. Accurate passive

identification requires the combination of multiple dismount characteristics, including

textile identification.

To understand the usefulness of textile identification, consider the following

examples. The first, involves the passive location of a militant leader, separating him

from a large group of fellow combatants. While the basic physical characteristics
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Figure 1.1: Featured clockwise from top left: (1) Search and Rescue, (2) surveil-
lance, (3) anti-camouflage capability, (3) target identification and tracking. These
are examples of different target detection scenarios where clothing detection enhances
mission objectives [2, 78].

of the group may be too similar for positive identification, the group leader may

be identifiable based on his clothing. Specifically, although their dress may appear

similar to that of their subordinates, it may be constructed from textiles that present

a different spectral signature. Obtaining information about the varying textiles allows

for passive identification and target separation.

The second example involves an enemy combatant in the field, actively avoiding

detection. Visual identification is complicated by camouflage face paint and gear, i.e.

hoods, helmets, or gloves. In this case, the available methods of visual identifica-

tion are neutralized. Other means of dismount identification, such as skin detection

and facial recognition, may be complicated by the methods of concealment as well.

However, by using textile identification, we can separate that individual from his sur-

rounding environment. Because this is achieved through passive methods, it can be

completed before the target is aware of detection.
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The third example involves a child lost in a wooded area. In this case, the target

individual would not be actively concealing himself. However, due to the nature of the

terrain, traditional detection methods may be hindered. Again, using textile detection

to separate that individual from the surrounding environment enables positive location

and recovery.

Textile detection makes use of a fabric’s spectral signature, obtained through

the use of hyperspectral data. This particular type of data is collected across the

electromagnetic spectrum. While this results in increased discrimination possibilities,

this high dimensional data requires large amounts of time and memory to process.

Feature generation, transformations, or feature selection can alleviate the prob-

lem of too many attributes [16]. These methods reduce the number of attributes of

a sample in an attempt to obtain a smaller set of highly discriminating features. Of

these three, feature selection is most applicable to high dimensional data sets like

hyperspectral data which can contain more than 2000 dimensions. Feature selection

is used to reduce large amounts of data while preserving that data’s unique classifi-

cation characteristics [79]. Several feature selection methods exist, all created based

on different governing principles [7, 16, 70].

The collection of hyperspectral data can be seen as an extension of multispectral

imaging [9, 10]. Where multispectral only images up to 10 spectral bands and has a

resolution of 10 (λ/△λ), hyperspectral imagery collects hundreds of adjacent spectral

bands with a resolution of 100. Multispectral imagers typically collect on the order

of 10s of spectral channels (not necessarily contiguous) whereas hyperspectral im-

agers typically collect 100s of contiguous spectral channels. Therefore, hyperspectral

collection produces a continuous, highly dimensional, spatially registered data set.

Highly dimensional data sets often contain redundant features that, depending

on the learning algorithm, will be selected as part of the feature set [68,93]. Redundant

features can effect the accuracy and waste computational capability as they provide

no new information to the class discrimination capability. Redundant features are
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highly dependent and therefore the removal of a redundant feature would not change

the discriminatory capability of the feature set. Guyon and Elisseeff [28] describe the

general feature selection process with the addition of non-redundancy of features for

data containing thousands of dimensions. Selecting non-redundant features for the

feature set provides more efficient and effective class discrimination [93].

1.1 Background

This section discusses textile detection in the context of complete dismount

characterization. Beginning with a brief overview of hyperspectral data and its spe-

cific application to textile detection. We explain the necessity of data reduction and

its benefits and deficits. We introduce the concept of a feature selection method,

especially as it relates to data reduction. The problem to be solved with this work is

identified and followed by a brief description of the presented novel feature selection

method.

1.2 Characteristics of Fabrics

Dismount detection combines several detection methods to increase accurate

detection. Textile detection is one aspect of the complete dismount characterization.

Skin detection, anthropometric data, and biometric data all provide information that

can be used for identification. The AFIT/ENG Sensors Exploitation research group

at WPAFB Ohio is currently developing methods for accurate modeling and detection

of skin [67]. These efforts will be enhanced by modeling software like Digital Imag-

ing and Remote Sensing Image Generation (DIRSIG) [36] created by Digital Imaging

and Remote Sensing Laboratory at Rochester Institute of Technology. Analyzing spe-

cific dimensions of the body, such as weight, height, and body composition creates a

database known as anthropometric data. Anthropometric data allows for the assess-

ment in differences of body proportions of populations. Biometric data encompasses a

wide range of physical characterization data. Fingerprint analysis, facial recognition,

and voice recognition are all classified as biometric data. While textile classification
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Figure 1.2: Examples of knitting (left) and weaving (right) that lead to different
spectral signatures [88, 89].

is a singularly good method of detection, if it is compiled with the data obtained

by the other methods listed, it will result in a complete characterization database.

Therefore, the result is a significant advancement in dismount identification.

Hyperspectral skin detection modeling is heavily physics-based [1]. Because tex-

tiles have a larger variety of physical characteristics, applying the same physics-based

techniques used in skin detection does not apply. Therefore, our work focuses on the

textiles spectral signature that is based on the textiles characteristics. Cloth is con-

structed in several different ways, which results in it possessing many different physical

properties. Cloth can be knitted (created with needles that pull loops through each

other) or it can be woven (created using a loom), as illustrated in Fig. 1.2. Several

different knitting styles and thread counts exist, each creating different physical char-

acteristics or behaviors. Furthermore, each different type of material used in textile

construction (e.g. cotton, nylon, wool etc.) has different physical properties [21, 57].

All these combinations result in a wide range of physical properties.

In the 1960s, a study was performed to characterize types of cloth [59]. The

wavelength region focused on 1 to 15µm for cotton, wool, nylon, and blends of these

materials. However, it is not specified in the study whether these fabrics were wo-

ven or knitted. It was concluded that there were no spectral details to differentiate

between these fabrics; this is due to the physical characteristics of the fabrics, which
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act as thousands of tiny blackbody radiators. It was also concluded that reflections

from the surrounding surfaces (e.g. walls, ceiling, etc.) made the characterization

difficult. However, an interferometer spectrometer was used to obtain the data and

could account for their findings [59].

Hyperspectral data provides a more detailed look into the physical nature of

fabrics, providing greater insight into their physical properties. Variations in the

physical makeup of fabrics preclude the use of physics-based modeling approaches

for detection and characterization. Therefore, statistical and geometric measures are

incorporated into the feature selection and detection discussed in this dissertation.

1.3 Hyperspectral Data

All materials absorb, reflect, or transmit electromagnetic radiation [20]. The

degree to which a material reflects electromagnetic energy is dependent on the wave-

length of the energy and the material’s physical characteristics. Collecting these

aspects allows a material to then be spectrally identified.

Hyperspectral imagery collects the content of a material’s spectral radiation

over a broad spectral range, resulting in high-resolution data. Spectral information

and spatial orientation of the image are recorded as they are located [22]. This is

superior to normal multi-spectral collection because the information gathered contains

more frequency bands, finer resolution, and wider spectral coverage. Hyperspectral

data typically has small sampling intervals of about 1nm (field spectrometer [37]) to

10nm, airborne visible infrared imaging spectrometer (AVIRIS) [10], and covers the

spectral range from visible through shortwave infrared, which is approximately 0.4

– 2.5µm [56]. Each piece of spectral data is referenced by its specific corresponding

spatial location as shown in Fig. 1.3.

This ability to collect hyperspectral information allows for the identification of

characteristics for different types of materials, since each image is much like that of a

three-dimensional cube where the spectral bands are represented as column vectors [9].
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Figure 1.3: Hyperspectral data is most easily understood as an image; two dimen-
sions define the spatial location and the third dimension is a vector of spectral values.
Above is a hyperspectral image showing the different spectral information contained
in hyperspectral data [65].

However, the large amounts of data generated through hyperspectral imaging can be

too much information to be easily processed. Therefore, it is necessary to reduce the

data, and extract only the wavelengths that assist in accurate object identification.

Fig. 1.4 illustrates an instance where broad spectrum collection is necessary. The

signals for different colors of the same material are shown in the figure. As can be seen

in the visible region, the signals are different; however, as the wavelengths progress

to shortwave infrared, they become more similar, simplifying identification. In this

instance, broad spectrum collection increases the amount of information regarding

each signal, allowing for more points of comparison. This approach is particularly

helpful for adaptation with our method.
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Figure 1.4: Above is an example of a textile sample, where each sample is a different
color of the same material: black (dashed), brown (dotted), and green (solid). The
plot exemplifies how similar the spectral characteristics are at longer wavelengths,
even if the different colors make the sample dramatically different in the visible spec-
trum.

1.4 Feature Selection

When establishing characteristics for identification, it is helpful to have many

attributes. To obtain the large data amounts necessary to characterize textiles, hy-

perspectral data is often used. It provides information about unique features of a par-

ticular material, information that could not be detected using multi-spectral methods

and that would therefore be lost. Multi-Spectral data is high resolution data collected

over relatively small bandwidths [9, 10]. Hyperspectral data is high resolution data

that is collected over a continuous bandwidth and typically includes many the same

regions as multi-spectral data and more. Hyperspectral imaging systems are excel-

lent sources of information, because of their ability to collect hundreds of spectral

channels. However, this may result in too much data to process in a timely or afford-
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able manner. High dimensional data often contains redundant features that hinder

the classification process [93]. The higher the dimensions the greater the chance of

incurring the curse of dimensionality [33]. One solution is to develop a feature se-

lection process to sift through the data and determine key features that define and

discriminate classes.

A feature selection process for hyperspectral data needs to be quick, accurate,

and portable. Most detection scenarios have a level of time constraint and most do not

take place in the lab. Therefore, the problem of detection becomes compounded by the

limits of time, computational cost and the need for portability. These requirements are

complicated by the need to evaluate data signals containing noise. Noise is a significant

problem in data collection; fortunately, systems are being developed with applications

for field-operational collection devices [34]. These devices can efficiently and effectively

collect preselected bandwidths over a wide range of wavelengths. However, collecting

data in this manner requires the a priori selection of bands to be useful. This is

because classification accuracy of a reduced feature set depends on the informational

content of the selected feature set. Because the nature of hyperspectral data requires

reduction or selection of bands, development of an accurate process is key. Extracting

a meaningful set of features from highly correlated, highly dimensional continuous

data that provides accurate discrimination of classes allows for the use of sensors that

collect only the spectrum of interest, resulting in information that can be quickly

processed, regardless of location. The work in this dissertation focuses on creating a

novel feature selection method by applying concepts derived from multiple fields of

study and adapting them for use in reducing high-dimensional data.
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1.5 The Problem

What started as a relatively simple goal, accurate dismount detection, has de-

veloped into a multi-faceted complex problem.

Can we develop a method to search a highly dimensional continuous signal to

provide a low-correlated small sized feature set that produces highly accurate classifi-

cation results?

The rest of this dissertation provides the necessary background and information

to show that our novel feature selection method solves this problem.

1.6 Methodology

To perform feature selection in highly correlated continuous data domains, ran-

dom processes and non-greedy methods are extended into a novel feature selection

method. Non-correlated Aided Simulated Annealing Feature Selection (NASAFS)

method focuses on refining the ability to distinguish between different high correlated,

high dimensional continuous data. The NASAFS method performs both random and

non-greedy search aspects by using simulated annealing, which is a stochastic local

search method. NASAFS incorporates a distributed spacing function and optimizes a

heuristic. The distributed spacing function addresses the issue of non-redundancy by

ensuring selected features are distributed throughout the data domain. The heuris-

tic contributes to fulfilling the accuracy requirement by using distance and depen-

dence measures to determine optimal discrimination. Feature set size is left as a

user-determined variable. The results show that NASAFS produces highly accurate

classification results with small feature set sizes.

1.7 Organization

In Chapter II, common mathematical procedures used in feature selection and

detection are discussed. Detection techniques and search algorithms are investigated.

In Chapter III, the proposed feature selection and detection methodologies are de-
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scribed. The heuristic is explained, along with the search algorithm employed in the

proposed feature selection method. In Chapter IV, the results of the data set anal-

yses are shown; this is done for both hyperspectral data sets, as well as the texture

data used. The novel feature selection method is compared to three common feature

selection methods. Chapter V summarizes the results obtained and proposes future

directions for this work.
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II. Background

The goal of a feature selection method is to preserve the classification ability of the

data, while reducing the feature set as much as possible to reduce computational

complexity. The feature set selection process evaluates features using one of two

approaches: evaluating and ranking each individual feature, or evaluating and ranking

sets of features [7,70]. Individual ranking of features can overlook redundant features

and dependencies between features, which can produce inferior results. Evaluating

the feature set as a set not only provides for a non-greedy feature selection, but can

also more readily distinguish between relevant and redundant features [70].

In Section 2.1, three common feature selection methods are reviewed. Different

theories regarding feature selection are covered in Section 2.2. Section 2.3 discusses

the selection of the classifiers and feature selection methods evaluated in this work.

Section 2.4 surveys current detection methods. Section 2.5 explains the governing

principles and basic operations for search and detection techniques. Explanation is

provided regarding mathematical foundations used to establish the statistical opera-

tions incorporated into the novel feature selection method discussed in this disserta-

tion.

2.1 Feature Selection

The process of selecting a feature set can be difficult. There are 2N possible

solution sets, where N is the dimensionality of the data. Due to the number of possible

solutions, the problem can quickly become intractable. Current feature selection

methods attempt to solve this problem; however, there are many different approaches,

and no one method works best for all situations. The type of feature selection method

required depends on the data’s size and type, as well as the intended application of

the resulting feature set.

In general, feature set selection is divided into four categories: classical, ideal-

ized, improving prediction accuracy, and approximating original class distribution [16].

The classical method involves feature set selection that satisfies an established cri-
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terion that defines the optimal feature set size [66]. The idealized approach finds

the smallest set of features that still retains the properties necessary to accurately

classify or detect a class [42]. The improving prediction accuracy method selects a

feature set that is able to improve classification accuracy or reduce a cost function

without decreasing that feature set’s ability to accurately select features that discrim-

inate well [47]. The goal of the approximating original class distribution method is to

select the smallest possible feature set that accurately represents the complete class

distribution.

Two main taxonomies for feature selection methodologies are Dash & Liu [16]

and Blum & Langley [7,51]. Dash & Liu [16] classify each feature selection process by

the search method employed; results are presented as a tree-like structure, which is

based on the sub-categorization of the feature selection method. Blum & Langley [7,

51] use three different definitions to place all feature selection methods into three

categories: filter, wrapper, and embedded.

Dash & Liu [16] describe all feature selection methods as having a generation

procedure, an evaluation function, a stopping criterion, and a validation procedure.

The generation procedure selects a set of features from all the attributes of a sample

using one of three process: a complete process, a heuristic process, or a random process.

The complete process is the most computationally intensive, but it will produce the

best possible feature set for discrimination purposes. The complete method starts

at the first feature and progresses through the features one feature at a time, until

all features have been evaluated. With this method, there are 2N possible solution

sets; therefore, the computational burden can be great, even for small values of N .

The heuristic process uses a function to determine the cost of a feature; the cost is

on the order of N2 or less, in most cases. It then provides this information to the

search algorithm; this allows for the determination of the current feature’s selection

or rejection. Selection occurs if the current feature benefits the process; rejection

occurs if the current feature degrades the process [74]. The random process selects

features randomly; it then uses a function to determine if each feature should be
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retained. Randomization can be beneficial to the feature selection process; however,

the random process may result in a solution that is complete, but not necessarily

optimal. Depending on the heuristic and search algorithm employed, the typical

search space is on the order of 2N or less [16].

The evaluation function determines the selected feature’s retention based on

a qualification function. Dash & Liu [16] categorize evaluation functions into five

types: distance measures, information measures, dependence measures, consistency

measures, and classifier error rate measures. Two of the five evaluation functions

are discussed in further detail in this dissertation: distance measure and dependence

measure. The distance measure distinguishes between classes. Euclidean distance and

Mahalanobis distance are examples of distance measures. The dependence measure

uses statistical information to determine a value of worth. The correlation coefficient

and the covariance are examples of dependence measures.

The stopping criterion ends the search process when a predetermined number

of features has been identified, or if the process itself determines that it has found

an adequate number of features. The validation process is used to determine the

validity of the selected features. If the proposed feature set is an accurate enough

representation of the complete data set, then it passes the validation criteria.

Blum & Langley’s feature selection taxonomy divides feature selection methods

into three groups: filters, wrappers, or embedded [7, 51]. The filter method uses a

training set and takes into account certain properties of the data. Those properties

then help to determine which set of features will be used in the detection algorithm;

however, no learning takes place in the selection of these features [7, 50, 51, 54]. Ex-

amples of filter methods are maximum entropy, measures of statistical redundancy,

ReliefF [48], Bhattacharyya [5], and linear dependence [44,90]. The wrapper method

picks a set of candidate features, and then uses those features with the training data

and a specific machine learning process in order to determine the accuracy of the can-

didate feature set. The machine learning process is not specific to the selection process
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and can be interchanged with other learning processes. Features are combined and

evaluated until an appropriate feature set is detected [7,50,51,54]. Examples of wrap-

per methods include breadth-first-search, genetic algorithms, and simulated annealing

searches [74]. Embedded methods determine a feature’s goodness as it selects the fea-

ture set. The feature set continually updates in order to produce a more desirable

feature set. This process continues until the stopping criterion is met [16]. In other

words, the embedded method adds or subtracts features in response to prediction er-

rors. The selection and learning process are integrated and can not be separated [50];

this is thought to produce a more discriminatory feature set. Examples of embed-

ded methods include C4.5 and the generalized relevance learning vector quantization

(GRLVQ) family of classifiers [16, 31, 61].

2.2 Current Methods for Feature Selection

This section covers several different methodologies that can be adopted for fea-

ture selection techniques. The methods discussed include: Principal Component Anal-

ysis (PCA), Relief/ReliefF, GRLVQ, and Bhattacharyya.

PCA [6, 9, 10, 41] is a technique used in many applications. PCA operates in

an transformed space and computes the data’s eigenvectors and eigenvalues from the

covariance matrix. The number of eigenvectors kept is determined by the user. The

total number of eigenvectors is on the order of the dimensionality of the data. Typ-

ically, only a small group of the eigenvectors are necessary to reduce the number of

dimensions in the data and maintain classification accuracy. The eigenvectors are cho-

sen in descending order of their eigenvalues. These eigenvectors form the new basis

for the data set, and allow the data to be represented by a different set of axes. De-

pending on the data, this results in a better discriminating class separation. Because

PCA’s discriminatory capability is based on the linear combinations of the features

and is projected into the transformed space, determining a feature in the original data

domain that has the greatest discriminatory capability is subjective [8]. The resulting

feature set is often found to be highly correlated and redundant. Therefore, PCA is
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an inadequate class discrimination method for high-dimensional data, noisy data, or

data with missing parts.

Relief [43] uses a distance measure to rank each feature of a sample to its nearest

in-class and out-of-class sample; the distance is the weighting of the feature, which is

then used to determine the best discriminating features. This technique was developed

by Kira and Rendell for the two class problem [42, 43]. It was later adapted to the

multi-class problem by Kononenko [48], and is ReliefF. However, hyperspectral data

has features that are highly correlated and dependent; therefore, ReliefF produces a

feature set that is highly correlated and redundant (see e.g., González [38]).

The Bhattacharyya distance [5, 24] is used as a method of feature selection by

means of a measure of the overlap of probability density functions (pdf ). The pdf of

each attribute between all class pairs (C(C−1)/2) is used in the Bhattacharyya func-

tion. Each attribute is then weighted based on the mean, median, or minimum [25]

values for each attribute compared per class. The minimum surface Bhattacharyya

feature selection method presented in [25] is a relatively good feature selection method

for the multi-class problem. However, the method and its deviations do not make pro-

visions to prevent highly correlated or redundant feature sets.

GRLVQ [31] and GRLVQI [45, 60, 61] are large margin classifiers and use an

adaptive diagonal metric (feature weighting scheme) to provide feature ranking in-

formation based on an attribute’s discriminatory capability. These techniques are a

continuation of LVQ2.1 [28,46], which moves prototype vectors around in data space

to determine a decision boundary for classification. Prototype updates are based on

a differential shifting strategy that helps refine the decision boundary. The selected

features are determined based on which attributes have the greatest contribution to

the classification. In order to obtain feature sets that are not highly correlated, and

to reduce the total number of features in the feature set, transformation of the data

prior to the GRLVQI process has been suggested [60].

2-5



2.2.1 Other Specific Related Works. In Section 2.1, the feature selection

methodologies discussed use different techniques to select a feature set that provides

discrimination capability. These methods span the different taxonomies, and each has

multiple variations; there are also other feature selection methods that use several

combinations of different methods. Some of the works most relevant to our method

are discussed in the following paragraphs.

The work of Kumar, et al. [49] states that most hyperspectral feature extraction

methodologies ignore the ordering information between adjacent bands, and typically

produce a global feature set, which is an inefficient utilization of the data. Kumar

et al. propose a pairwise method that merges adjacent band subsets, in order to

obtain a small number of discriminatory features. They base their feature selection

methodology on Coefman and Wickerhauser [13], and Saito and Coifman [75], who

divide a hyperspectral signal into wavelet packets and introduce a classification scheme

called local discriminant bases (LDB). The LDB method projects the signal onto

orthonormal bases and then either minimizes or maximizes an entropy/cross-entropy

cost function. The LDB method then divides the hyperspectral signal into segments

of equal lengths. LDB evaluates the first two attributes and determines individual

and combined relevance, based on an entropy cost function. Depending on the goal

of the cost function, the attributes are either combined or left as individuals. It then

moves to the next two attributes and performs the same operation. It continues this

process in a bottom-up approach on a signal decomposed by the discrete wavelet

transform [13, 75]. Kumar et al. [49] propose an alteration to the LDB method that

does not divide the signal into equal segments; instead they propose unequal divisions

to provide better classification using a three step process: recursive partitioning of

adjacent bands into non-overlapping groups, merging bands within each group (linear

combination), and a selection of band groupings based on the best discrimination

between classes.

Peng et al. [68] present a feature selection method based on mutual information

that capitalizes on maximum-dependency and minimum-redundancy. Peng et al. also
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state that a good feature set is not necessarily a set of individually good features. They

propose that the goodness of the feature set is instead dependent on the feature set

as a whole; this is also proposed by Jain et al. [39], and Cover and Thomas [14, 15].

Max-dependency, as stated in Peng et al. [68], is a mutual information process used to

determine the features with the largest dependency on the target class. However, since

this is difficult with high-dimensional data, they use max-relevance. Max-relevance

incorporates mutual information; however, it can be highly redundant. To alleviate

this tendency, they combine max-relevance with a min-redundancy from their previous

work that also uses mutual information [19]. Peng et al. [68] show that their previous

work (minimal-redundancy-maximal-relevance (mRMR)) produces the same results as

max-dependency for the sequentially added feature approach. However, they suggest

a better approach is a two-fold process, using mRMR initially, then using a more

sophisticated search method to further reduce the feature set.

Other techniques use a strategy that reduces the dimensionality of the data

by grouping attributes based on a correlation matrix to determine their correlation

to each other, then applying a type of feature selection method [79]. Some feature

selection methods use a stochastic function as a preprocessing technique to feed a

feature validation process, as in the work by Pizzi et al. [69]. Pizzi et al. use a

probabilistic neural network to determine if a randomly selected set of features is a

good discriminating feature set.

While some of the methods discussed in this section attempt to produce non-

redundant feature sets, their methods differ significantly from the novel feature se-

lection method presented in this work. However, all the feature selection methods

evaluated against our novel feature selection method tend to produce highly corre-

lated feature sets, indicating redundant features. A robust feature set should not only

provide accurate classification, but also be non-redundant to ensure class discrimina-

tion in noisy environments or instances of data occlusion.
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2.3 Classifier and Feature Selection Method Qualifications

Holmstrom et al. [35] categorize classifiers according to their neural net quali-

ties. These qualities are plotted in a two-dimensional graph, where the axes represent

design complexity. These design complexities are the flexibility of a classifier’s archi-

tecture with respect to its discriminant function (horizontal axis), and the classifier’s

learning ability with respect to its neural net training (vertical axis) [35]. Fig. 2.1

is the schematic of the neural characteristics of some classifiers. Some are originally

determined by Holmstrom et al. [35]; others have been added by González [38], based

on Holmstrom et al. definitions. In this diagram, C4.5 falls into the upper right quad-

rant, indicating an adequate amount of complexity and some neural net capability.

However, Näıve Bayes falls into the lower left quadrant. This is because Näıve Bayes

has little neural net capability, due to the fact that it is predominantly a statistical

learning machine; it has little complexity to its discrimination function, as well. The

classifiers represented in this work are purposefully chosen to span the Holmstrom

taxonomy domain.

The feature set selection methods chosen for comparison with our novel feature

selection method belong to different categories, as defined by both Dash & Liu [16]

and Blum & Langley [7, 51]. The Dash & Liu [16] taxonomy identifies ReliefF as

a heuristic based search method; according to Blum & Langley [7, 51], it is a filter

method. GRLVQI and Bhattacharyya are both classified by Blum & Langley [7, 51];

however, GRLVQI is an embedded method, whereas Bhattacharyya is a filter method.

While these feature selection methods do not cover all the taxonomy categories, this

is a representative selection of them.

2.4 Target Detection

Both our novel feature method and our detection algorithm exploit the structure

of hyperspectral data. Additionally, since our parameters are discrete, the detection

algorithm employed is simple hypothesis testing [58]. Hypothesis testing of this type

can be composite or binary; for this work, a binary approach is taken. To model this
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Figure 2.1: Schematic of the classifiers, based on their neural net categorization, as
determined by Holmstrom et al. [35], and added to by González [38].

approach, consider an example of attempting to detect the presence of an airplane

in a specific area of airspace. Let H0 be the hypothesis that the plane is not in the

airspace, and let H1 be the hypothesis that the plane is in the airspace. The raw

received radar return of the signal only (no noise) is considered the observation data.

If the signal is large enough, then we conclude hypothesis H1; if not, we conclude H0.

The trick is determining the threshold at which H1 can be concluded; in this example,

this is determining where the threshold is in relation to the magnitude of the signal

return.
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Using this understanding of the binary detection method, we can define some

statistical variables. H0 is called the null hypothesis. This is the expected result;

for our example, this is the plane is not present. H1 is the alternative hypothesis,

the unknown condition that is possible, but not expected; in our example, this would

be the plane is present. Therefore, using the above terminology and the previous

example, P [H1|H0] is the probability of thinking there is a plane present, given that

there is no plane present; this is referred to as the probability of false alarm, denoted

as PF . P [H1|H1] is the probability of thinking there is a plane present, given there

is a plane present; this is referred to as the probability of detection, denoted as PD.

P [H0|H1] is the probability of thinking there is not a plane present, given there is a

plane present; this is referred to as the probability of a miss, denoted as PM , where

PM = 1 − PD. P [H0|H0] is the probability of thinking there is not a plane present,

given there is not a plane present; this is referred to as the probability of a rejection,

denoted as PR, where PR = 1 − PF [58, 76]. The understanding then is that the

prediction is either right (P [H1|H1], P [H0|H0]) or it is wrong (P [H0|H1], P [H1|H0]).

A Receiver Operating Characteristic (ROC) curve can be used for binary clas-

sification systems to characterize detection capabilities for either singular or multiple

systems. A ROC curve is a graph displaying PD versus PF , as the threshold is varied.

This allows for an accuracy measurement of a certain system to be displayed, with

regard to the degree of how inaccurate it can be. For example, Fig. 2.2 shows a generic

ROC curve; using this diagram, it can be determined if a PF of 0.2 is desired, then

the system will produce a PD = 0.537. It is also shown that with a greater probability

of detection comes a greater probability of false alarms. Ultimately, it is desirable for

a system to have a high probability of detection and a low probability of false alarm.

Bayes’ rule is a way to determine the a posteriori probability given the a priori

probability, and is often used in detection systems. Bayes’ rule is defined as:

P [A|B] =
P [B|A]P [A]

P [B]
. (2.1)
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Figure 2.2: Example of a generic Receiver Operating Characteristic (ROC) curve.

This is read as: the probability of A given B is equal to the probability of B given A

multiplied by the probability of A, and then divided by the probability of B.

Two common detection systems are Bayes’ test/likelihood ratio (BLR) and Min-

imax. For our airplane example, the BLR is a ratio of the probability density function

(pdf ) of the case where the plane exists in airspace versus the pdf of the case where

the plane does not exist in the airspace. This ratio is compared to a cost function,

which then determines if it is the null hypothesis or the alternative hypothesis that

is chosen. The BLR is used to determine a threshold for defining target present or

target absent. The cost function is a ratio of the prior probabilities multiplied by the
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ratio of the cost of each possible case; therefore, the BLR is derived from the risk:

Risk = E[cost] =
∑

i,j

CijP [Hi|Hj]Pj (2.2)

where E[·] is the expectation, i and j are binary (i.e. 0 or 1) and C00 is the cost of

guessing H0 when H0 is true, C10 is the cost of guessing H1 when H0 is true, C01 is

the cost of guessing H0 when H1 is true, and C11 is the cost of guessing H1 when H1 is

true. If p0(x) = p(x|H0) and p1(x) = p(x|H1), and
∫

S0
p0(x)dx is the total probability

of picking H0 given H0 is true, and since

∫

S0

p(x)dx +

∫

S1

p(x)dx =

∫

S

p0(x)dx = 1 (2.3)

where S0 is the decision region of H0, and S1 is the decision region of H1, and S is

the total region (S0 + S1), then:

∫

S1

p(x)dx = 1−

∫

S0

p(x)dx. (2.4)

Therefore,

Risk = C00P0

∫

S0

p0(x)dx + const1(1)− C10P0

∫

S0

p0(x)dx + const2(1)

−C11P1

∫

S0

p1(x)dx + C01P1

∫

S0

p1(x)dx

= const1 + const2 +

∫

S0

[C00P0p0(x)− C10P0p0(x)−

C11P1p1(x) + C01P1p1(x)]dx

(2.5)

where const(1) = C10P0 and const(2) = C11P1. Since the goal is to minimize risk,

const1 and const2 can be ignored, because we have no control over these constants.

It can be seen from Eqn. 2.5 that to minimize the risk, the equations within the
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summation need to be as small as possible (actually, less than zero)

(C00P0 − C10P0)(p0(x))− (C11P1 − C01P1)(p1(x)) < 0. (2.6)

Eqn 2.6 can be rewritten to see the form of the BLR as:

(C00 − C10)P0(p0(x)) < (C11 − C01)P1(p1(x)). (2.7)

Cross multiplying and solving for the pdf’s yields,

(C00 − C10)P0

(C11 − C01)P1
>

p1(x)

p0(x)
, (2.8)

where the inequality changes due to the fact that the cost C01 > C11. Therefore, the

BLR is written as:

Λ(x) =
p1(x)

p0(x)

>
<

H1

H0

(
C00 − C10

C11 − C01

)
·
P0

P1
(2.9)

where p1(x) and p0(x) are pdf s, and P0 and P1 are the prior probabilities of each

hypothesis (H0 and H1, respectively).

The Minimax forms a decision rule in order to minimize the risk for the worst

case of P0, when P0 is unknown. For the Minimax, first the Bayes’ test is solved in

terms of the unknown P0, then the risk is evaluated assuming P0 is correct. The risk

is defined in Eqn. 2.2 [58]. The next step is to find the argument that makes R(P0)

peak; BLR is evaluated at that point, and R(P0) is used to determine the threshold.

The detection algorithm proposed in this paper uses a threshold; however, that

threshold is determined with statistical measures, not the usual techniques as found

in the BLR. The detector presented in this work is discussed in detail in Chapter III.

The statistics used in conjunction with the detector of this work are discussed in the

following section.
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2.5 Search Algorithms and Statistics

The definition of search, in terms of algorithms and according to Russel and

Norvig [74], is the process of looking for the best possible sequence, given several

choices that will achieve the goal state. A search algorithm can be divided into several

different categories; all are based on the intended use of this definition of search.

The principles that are used to create a search algorithm are called agent pro-

grams [74]. There are four basic types of agent programs: simple reflex agents, model-

based reflex agents, goal-based agents, and utility-based agents.

A simple reflex agent is a process in which decisions are based on the current

environment [74]. These types of agents do not use information about past decisions

or environments. They also do not store information about the environment; decisions

are based solely on currently observable information. Therefore, they are of little use

when the current situation is not fully observable.

Model-based reflex agents also base decisions on the present environment; how-

ever, they differ from simple reflex agents in their use of information stored regarding

unobservable parts of the environment [74]. This information formulates a working

model of the environment that assists in decision-making; this is especially useful in

situations where the decision must be made based on partial observability.

Goal-based agents make decisions based on both current and modeled informa-

tion [74]. However, the current information and the stored model of the environment

are combined in order to achieve a particular goal. Decisions are then made according

to which choice will lead to the desired goal state.

Utility-based agents incorporate all of the aspects of the other three agent pro-

grams. They differ from goal-based agents because while they base decisions on the

attainment of a goal, they evaluate the possible routes to a goal and choose the most

efficient route possible [74].

These search algorithms receive a problem and return a solution. In some cases,

the algorithm does not receive information about the problem, only the problem’s
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definition [74]. These algorithms are known as uniformed algorithms. In contrast,

an informed algorithm receives not only the definition of the problem, but also infor-

mation about the problem; this information helps the algorithm to more efficiently

determine the direction of its search.

The performance of an agent is determined by its success at finding desirable

solutions; the criteria used to establish this are called performance measures. These

performance measures are: completeness, optimality, time complexity, and space com-

plexity [74]. Completeness is the ability of the search method to find a solution, given

that there is a solution. Optimality is determined by the path cost function, where

the optimal solution is the solution with the lowest path cost. Time complexity refers

to time required by the algorithm for the search and space complexity is determined

by the amount of memory required to perform the search.

For a better understanding of some of these definitions, a few examples are

given. An uninformed search, that is complete, that has a time complexity of O(bd+1)

(where b is the branching factor, and d is the depth of the shallowest solution), that

has a space complexity of O(bd+1), and that is optimal is a breadth-first-search. When

executed, a breadth-first-search expands each subsequent node from the root node. If

none of the explored nodes are the solution, the search goes to the first subsequent

node created and expands all of its subsequent nodes and checks for the solution. If no

solution is found, the previous nodes are retained in memory and the search proceeds

to the second subsequent node; the process of expansion is repeated until every node

is expanded or the goal is found. The breadth-first-search method is complete, but it

is costly in terms of time and memory requirements [16, 74].

An informed search can be incomplete and not always optimal, but have a space

and time complexity of O(bm) (where b is the branching factor and m is the maximum

depth of the search space). An example of an informed search is the greedy-best-first-

search [74]. The greedy-best-first-search operates much like the breadth-first-search;

however, after the initial expansion of the root node, each subsequent node has a value
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attached to it. This value is the estimate of the time required by the search algorithm

to achieve the goal if that particular node is used to determine the solution. In this

instance, the solution will be the node with the best assigned value. The function that

provides this value is called a heuristic. However, completeness and optimality of a

search algorithm are dependent on how well the heuristic performs for that particular

situation.

An informed search that is complete and optimal is the A∗ search. This search

determines an actual cost for reaching the subsequent node, rather than estimating

that cost. This cost is then combined with the use of a heuristic. This is done in

order to determine the best node for use in subsequent expansion [74].

These search methods help to explain the basic concepts of search algorithms.

However, the type of search used in this work requires the exploration of other meth-

ods. In our case, the actual path to the goal does not matter, only the fact that the

goal is obtained; therefore, a local search may be employed. In a local search, the

algorithm operates using its current state. It then moves to neighboring states of the

current state; this is based on the heuristic value assigned to its neighbors [74]. Local

searches use minimal amounts of memory, and are useful in large or continuous spaces;

these factors make it well-suited for feature selection in hyperspectral data, as well as

for use in optimization problems. The goal of a local search is to find the maximum

or minimum of the cost function of a data set; ideally, this is a global maximum or

minimum, not a local maximum or minimum.

Hill-climbing is a local search algorithm that chooses, in a greedy manner, the

neighbor that leads it in the direction of the nearest minimum or maximum. The

problem with a hill-climbing algorithm is that it can get stuck in a local minimum

or maximum and fail to find the optimal goal. Our novel feature selection method

employs simulated annealing search (SA). This is an informed stochastic hill-climbing

local search that adds randomness to the algorithm; this is done in a attempt to pre-

vent the hill-climbing method from getting caught in a local maximum or minimum.
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SA achieves this randomness by combining the hill-climbing technique with a random

walk [74]. It is modeled after the annealing process in metallurgy, which involves grad-

ually cooling down metal, allowing the material to change its crystalline structure,

thereby producing a stronger, more efficient material. The SA process starts with an

initial state that is chosen at random. A value is assigned, and the process continues

to the next state. These states are then compared, and the state that improves the

current situation is kept. It is possible that a state that does not improve the current

situation may be kept; this is due to the random nature of the process. It uses the

delta by which it worsens the state and modulates it with an exponential function,

(exp( err
T

)), which is a function of the cooling temperature T . If the difference of the

randomly chosen state decreases the current value, the state has a chance of being

kept; however, this is at a probability less than one [74]. From the above exponential

expression, we can see the probability lessens as the negative difference increases in

negativity, and as T decreases. The temperature T is set to decrease according to a

predefined decay function. Therefore, as time increases, the possibility of accepting

a state with a value less than the current state decreases to zero. The SA process is

illustrated in Fig. 2.3.

SA is considered a wrapper feature selection search method based on the Blum

& Langley taxonomy [7, 44, 51]. However, the feature selection method proposed in

this dissertation is not technically a wrapper method. The heuristic incorporated in

the algorithm contains filter methodologies (i.e. dependence measures and statistical

calculations [90]) and gives the overall connotation of an embedded method. There-

fore, it can be concluded that the feature selection methodology set forth in this work

is a hybrid that most closely resembles an embedded methodology. Using the Dash

& Liu [16] taxonomy, it is again difficult to determine the exact classification. The

incorporation of a heuristic implies its classification to be a heuristic process; how-

ever, simulated annealing is a random process. Therefore, our novel feature selection

method is considered to be a hybrid according to the Dash & Liu [16] taxonomy as

well.
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Figure 2.3: Flow chart for the simulated annealing search process.

As previously stated, the heuristic used in this work contains dependence mea-

sures and statistical calculations. These are common and excellent methods of de-

lineating between random data sets, especially since this work deals with random

processes. Some of the common geometrical and statistical measures used are the

Euclidean distance metric and covariance and correlation dependence statistics. A

random process (RP) is considered to be a sequence of random variables (RV). The

Euclidean distance between two random vectors X = (X1, X2, ..., Xk) and Y =

(Y1, Y2, ..., Yk) defined on ΩX,Y with outcomes (xi, yi : i = 1, ..., k) ∈ Ω according
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to distribution FX,Y. The Euclidean distance is therefore,

Distance(X,Y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xk − yk)2

=

√√√√
k∑

i=1

(xi − yi)2.
(2.10)

Which is complicated but can be overcome by using the more simplified Manhattan

distance given by:

Distance(X,Y) =

k∑

i=1

|(xi − yi)| (2.11)

where |(·)| is the absolute value.

Covariance and correlation are dependence measures, which can best be under-

stood by first defining variance. Variance, σ2, is a measure of data distribution around

the mean (average value of a given set of data) [52, 58], defined as:

σ2(X) = E[(X − E[X])2] (2.12)

where E[·] is the expectation. Covariance, cov, is the measure of how two variables

(RVs in this case) change in relation to each other. In the case where it is random

processes that are measured rather than random variables, the term cross-covariance,

xcov, is used. A positive covariance signifies that the rates of change for the two

variables are equivalent. However, if the covariance is zero, then the variables are

determined to be uncorrelated. Correlation is defined as the linear dependence, or

lack thereof, between two variables. Covariance and correlation are shown in Eqn. 2.13

and Eqn. 2.14 as shown below [52, 58].

Cov(x, y) = E[(x−E[x])(y − E[y])]

= r(x, y)−E[x]E[y]
(2.13)
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where,

r(x, y) = E[xy], (2.14)

where r is the correlation function, and E[·] is the expectation.

The autocovariance is the covariance of an RV with itself time shifted, where

CovX(t1, t2) = Cov(X(t1), X(t2)) [58]. The autocorrelation, R, is the same concept

as the autocovariance, written as: RX(t1, t2) = E[X(t1), X(t2)] [58].

2.6 Redundancy in Feature Sets

Feature set redundancy is a known problem that few have attempted to solve.

Sometimes this redundancy can be observed by viewing the data signal in correlation

with the chosen feature sets, as shown in Fig. 2.4. This figure shows the locations of

the six features for the feature set chosen by the Bhattacharyya method. However, the

visual inspection method is not computationally viable for determining redundancy

in a feature selection system; to accurately ascertain redundancy, another method

must be used. According to Hall and Smith [30], a good heuristic is one that selects

features that are not correlated with each other, but that are highly correlated with

their associated class. Therefore, a heuristic is one method that can be used to elim-

inate redundancy. Statistical methods are also commonly used to indicate feature

set redundancy has occurred or will occur. The correlation coefficient is the most

common statistic used to determine probable redundancy. In the paper by the cur-

rent authors, Clark et al. [11], the spectral domain is distributively divided to obtain

non-redundant feature sets. The procedure in Clark et al. [11] divides the spectral do-

main into equal regions; a spacing function is then applied, based on these regions. A

better division of the spectral domain can be achieved by using the correlation matrix

of the data, and provides feature sets with lower correlation. A current method by

Punitha and Santhanam [70] attempts to solve the redundancy issue by using PCA to

select features that are relevant. These features are then subjected to the correlation

function to determine redundancy. However, the use of PCA has several drawbacks,
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Figure 2.4: Example of the redundancy produced by the Bhattacharyya feature set
selection method. The diamonds are the feature locations of the six features chosen
by the Bhattacharyya method, shown on the textile signal 80% Polyester 20% Rayon.

as discussed in Section 2.2. Overall, this method produces a smaller feature set than

the other methods tested, and it is less efficient as well [70]. Hall and Smith [29, 30]

present a correlation-based feature selection method, in which a heuristic evaluates

the relevance and redundancy of features; this is based on a best-first-search method

with a stopping criterion. This method is comparable to, if not better than, other

wrapper methods. However, no other categories of feature selection methods are eval-

uated, and there is no comparison provided regarding correlation of the feature sets

obtained. Mutual information is another approach to solving redundancy issues, as

presented in Ding and Peng [19]. Their method incorporates evaluation of features on

an individual basis. Alternatively, Hastie et al. [32] express that it is best to handle

redundant features as a feature set, where relevance and redundancy are determined

simultaneously. Therefore, they propose a method where redundant features are han-

dled explicitly. This is similar to the basic premise of the novel feature selection
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method presented in this work; however, our method reverses the order suggested by

Hastie et al. [32]. The method used in Hastie et al. evaluates each feature for rele-

vance using a feature’s correlation value to its class. The redundancy is then evaluated

in a pairwise manner with another feature in the feature set. Qu et al. propose a

feature selection method that uses a forward selection hill-climbing search. Irrelevant

features are removed from the ranked feature list by a mutual information scheme and

redundant features are then removed via a pairwise decision correlation process [72].

In these methods, redundancy is acknowledged to be a problem, and is determined

by some statistical evaluation of the individual features. Our novel feature selection

method uses the correlation matrix to determine redundancy, but not in the same

manner as the previously mentioned works (described fully in Section 3.1.1.2).

2.7 Summary

This chapter provides a basic understanding of the feature selection process

using two prominent taxonomies. The processes of several common feature selection

methodologies are discussed, as are those of a few new methods. The feature selection

methods chosen for comparison in this work are shown to be a good representation

of the taxonomies discussed. The operating principles of detection and classification

systems are outlined. The various types of search algorithms are reviewed, and the

specific type of search method used in this work is covered. Several statistical mea-

sures are explained to provide a better understanding of the methods incorporated

in the novel feature selection method presented in this work. The problem of feature

set redundancy is reviewed, and several current methods developed to alleviate this

problem are explained. The literature review and background knowledge provided de-

termine that an accurate feature selection method, using a stochastic search algorithm

to produce a non-redundant feature set, has not been achieved.
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III. Feature Selection and Detection

The typical feature selection process incorporates a couple of techniques. A feature

selection method and a function to determine feature goodness. The feature selection

method consists of a search technique, where the goodness function is typically some

sort of a heuristic, where goodness provides an indication of classification accuracy.

Selecting features of a feature set that have low correlation are desired because cor-

relation indicates redundancy [18, 93]. Redundant features typically do not add new

information to the discriminating capability of the feature set, and are generally con-

sidered unnecessary [28]. Additionally, a feature set with redundant features wastes

a collection system’s computational resources.

The following sections discuss two versions of our novel feature selection method

that provides non-redundant features. The first version, Non-correlated Aided Simu-

lated Annealing Feature Selection (NASAFS), uses a correlation matrix and produces

rigid sub-regions of the data domain to assist feature non-redundancy. In this ver-

sion, the distributed spacing technique determines low correlations of features (non-

redundancy) and operates as a cross-check outside of the heuristic method. The

second version, Non-correlated Aided Simulated Annealing Feature Selection - Inte-

grated Distribution Function (NASAFS-IDF), improves the first by eliminating the

correlation matrix and the use of data sub-regions. This version optimizes the low

correlation of features by incorporating it into the heuristic. The second version also

differs from the first in its use of a one-versus-all approach, rather than a class pair-

wise process. In Sections 3.1 and 3.2, a step-by-step description of our novel feature

selection method and the improved version is given. Sections 3.1.1 and 3.2.1 detail

the steps involved in the novel feature selection method and its improved version.

Sections 3.1.2 and 3.2.2 describe the feature database and how it is created. Finally,

Section 3.3 discusses the operation of the detector developed for this work.
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3.1 Non-correlated Aided Simulated Annealing Feature Selection

Overview

The first version feature selection method produces low correlated feature sets

using a stochastic search technique that is aided by a heuristic. This method is called

the Non-correlated Aided Simulated Annealing Feature Selection (NASAFS) method.

NASAFS selects features from the collected data domain, with low correlation and

good classification accuracy. Attributes of the data domain contain discrimination-

rich information, as it directly relates to each feature. However, this information

can be changed or degraded when transformed, which leads to sub-standard feature

selections. Therefore, feature selection methods that operate in the data domain have

an advantage to those that transform the data prior to feature selection.

NASAFS accomplishes the low correlation by using a distributed spacing tech-

nique adapted from multi-objective optimization problems to constrain the search

process [12, 85]. This spacing technique determines the spread of a feature set’s fea-

tures across the domain by calculating the normalized difference of the expected

spread of features to the actual spread of features. This ensures a set of features that

has low correlation, which in turn produces a feature set that has highly robust in dis-

criminatory capability; due to the decreased redundancy in the information content.

The feature set is found using simulated annealing (SA), a the hill-climbing stochastic

search method [74].

SA uses a heuristic during the search to decrease the computational requirements

of the search algorithm, the feature selection search is accomplished in a class pairwise

manner. Each pair of features are combined to create a database of distinguishable

features, which is used to discriminate the reference class from all other classes. The

feature selection process builds a small database of distinguishable features in order

to discriminate the reference class from all other classes. This database is then used

to create a feature set with a highly accurate detection rate. From these histograms
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a single feature set for each class is created. The resulting feature set is then used by

a classification method to categorize new samples into one of the given classes.

Let xj represent a bin, where xj ⊆ Xi and Y = {x1, x2, x3, ...xm}. Xi is the

complete set of features of a sample, and j = 1, ...m, and i = 1, ...M , also |xj | = Nbin.

In this case m is the total number of bins (N/Nbin) of a sample and M is the total

number of samples. Let F represent the desired feature set, where a bin is defined as

a feature, and let z represent the number of features of F (|F | = z). Suppose that

H(·) is the feature set evaluation function and that maximizing H produces better

discriminating feature sets. Feature set redundancy is considered also, therefore, let

J(·) be a function that determines redundancy and minimizing J(·) is desired. The

feature set selection problem is finding a set of features F ⊆ Y such that |F | = z and

H(F ) = max
Q⊆Y,|Q|=z

H(Q) (3.1)

and simultaneously

J(F ) = min
Q⊆Y,|Q|=z

J(Q). (3.2)

Our desire is to determine F in a stochastic, non-greedy manner. NASAFS and

NASAFS-IDF accomplishes this task.

NASAFS determines a feature set based on the set of features. Instead of deter-

mining the best features based on some evaluation criteria and placing them in a set,

a set of features is chosen and the set is evaluated. This process may choose individual

features that alone might not be the best class discriminators; however, when placed

within a group of features, this group may outperform a feature set of individually

great discriminating features. When correctly incorporated, the performance of the

group method of feature selection can take advantage of synergies of features within

the set, producing highly accurate class discrimination.
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NASAFS consists of three distinct stages: selection, evaluation, and candidacy

determination. The selection stage comprises of two different methods: an initial

selection and an iterative selection. The evaluation stage is determined by the dis-

tributed spacing method and the heuristic. The heuristic determines the discrimina-

tion capability of the feature set and consists of dependence and distance measures

(Eqn. 3.19). The candidacy determination stage is judged by the search algorithm,

simulated annealing. These three stages are repeated until convergence.

3.1.1 NASAFS Methodology. Fig. 3.2 is a flow diagram that aids in the

understanding of the NASAFS process and works as follows:

1. Compute the correlation matrix, rX . Bin the data, xj ⊆ Xi where xj is the

jth bin of the data sample Xi and |xj | = Nbin and i = 1...M where M is

the total number of samples. Determine the cross-covariance threshold, kh =

min[xcov(xj,i, xj,K)], where xj,i is the jth bin of the ith sample, and i and K are

the same class and i = 1...M , j = 1...m where m is the total number of bins of

a sample, and K is defined as {K = 1...M : K 6= i} (Section 3.1.1.1).

2. (a) Randomly select a feature set F , F ⊂ Y where Y = {x1, x2, x3, ...xm} and

|F | = z where z is defined by the user. (b) Ensure acceptable distribution across

the signal domain, ι < ιu, ιu is the acceptable distribution (Section 3.1.1.2).

3. (a) Heuristic, h, evaluates the feature set (Eqn. 3.19), (b) Compete the return

scalar value using the simulated annealing search (Section 3.1.1.3).

4. (a) Replace a feature in the feature set with a random pick of the remaining

features. (b) Maintain the distributed spacing requirement. (c) Evaluate the

new feature set with the heuristic (h), (Section 3.1.1.4).

5. Compete feature sets with SA (Section 3.1.1.4).

6. Repeat steps 4 and 5 until convergence (Section 3.1.1.4).
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Figure 3.1: Example of a hyperspectral signal segment, divided into bins and sub-
regions. The solid line is the reference signal and the dashed line is the test signal;
1. . . 3 are the sub-regions and A. . . I are the bins. Both signals have a 1nm sampling
interval and each bin is constructed of 10 spectral attributes.

3.1.1.1 Step 1: Training (Feature Selection Covariance Threshold).

NASAFS trains on the reference class samples by finding the lowest cross-covariance

value,(xcov(x, y)),(shown in Eqn 3.4) of every combination of each corresponding bin

of the reference class, Fig. 3.1 and 3.3. This cross-covariance threshold is determined

as:

kh = min[xcov(xj,i, xj,K)] (3.3)

where xj,i is the jth bin of the ith sample, and i and K are the same class where K

is defined as {K = 1...M : K 6= i}, and i = 1...M , j = 1...m where m is the total

number of bins of a sample. Where the bin is defined as, xj ⊆ Xi where xj is the

jth bin of the data sample Xi and |xj | = Nbin. Figs. 3.1 and 3.3 provide a visual
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Figure 3.2: Diagram depicting the flow of feature selection method NASAFS (within
the dashed box), and its connection to a classification method (outside the dashed
box).

understanding of the bin concept. The cross-covariance is defined as:

xcovx,y = E[(x− µx)(y − µy)]

= ρx,y − µxµy

(3.4)

where E[·] is the expectation, x and y are random variables, µx and µy are the means

of the random variables, and ρ is the cross-correlation [52].

The process described is used for both the high-resolution and low-resolution

data sets. However, the determination of bins is different for each resolution case.

The high-resolution case uses non-overlapping (sequential) bins, as shown in Fig. 3.1.

In the low-resolution case, the bins divide the signal by sliding the bin over, one

attribute or dimension at a time, as shown in Fig. 3.3. The training function requires
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at least two samples from the reference class to assess a covariance threshold kh; this

threshold is then used in the heuristic, shown in Eqn. 3.19. The user must define the

bin size, which is typically set to the bandwidth of the target collection system to be

used for the detection task.

NASAFS uses the construct of features, which has a specific meaning as it

applies to hyperspectral data or a correlated continuous domain; however, for this

work, a feature is a grouping of consecutive dimensions of a sample. This grouping of

consecutive dimensions are considered a bin; therefore, a feature set is a set of features

where each feature is a bin and each bin can be two or more sequential attributes of

the signal. The purpose of a bin is to divide the signal for processing by NASAFS

(Fig. 3.1 and 3.3).
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Figure 3.3: Example of a hyperspectral signal segment; divided into bins and sub-
regions. The low-resolution data uses a sliding window technique instead of a sequen-
tial binning process. Each letter corresponds to a different bin; the solid line is the
reference signal, and the dashed line is the test signal, and A. . .E are the bins. The
example shown is for a 10nm bin size consisting of 10 spectral attributes per bin.
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3.1.1.2 Step 2: Distributed Spacing. Distributed spacing is a tech-

nique used to divide a population into sub-regions. These sub-regions are then used

to determine if the total population is distributed as per expectation. To adapt the

concept of distributed spacing to feature selection, it is necessary to have an under-

standing of the problem this equation is intended to solve. The feature selection

methods described in Section 2.2 have a tendency to select highly correlated features.

The goal is to incorporate a measure of feature distribution that optimizes feature se-

lection to prevent correlated feature sets. This approach will produce a better feature

set that properly represents a class, resulting in increased discrimination accuracy,

especially in the presence of noise.

The equation presented in the book by Coello Coello et al. is intended for use

with Multi-Objective Evolutionary Algorithms (MOEA) [12]. The variables in the

equation given in [12] have specific meanings that are tied to that domain; most are

in regards to a genetic algorithm. The purpose of the distributed spacing equation

is to determine how well points are distributed in relation to the optimum point

distribution.

In its original context, distributed spacing provides a measure of how distributed

the Pareto optimal solutions are across the MOEA non-dominated region [12]. A

solution x∗ is Pareto optimal if it establishes an equilibrium of sorts. This means there

is no other x solution that can decrease a criterion without causing another criterion

to increase [12]. In the description, x is a N -dimensional vector that has N decision

variables and where x∗ is the global minimum solution. The vectors that correspond

to the Pareto optimal solutions are termed as non-dominated. For example, if two

vectors are non-dominated, neither vector is better than the other; however, if vector

x1 is slightly better than vector x2, then x1 dominates x2 [85]. Any group of vectors

that is not dominated by any other vector is termed non-dominated [85]. Therefore,

optimal solutions of a multi-objective optimization problem are the non-dominated

solutions.
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The sub-regions, presented in the definition of the distributed spacing equation

in [12], are considered as multiple populations that contain several vectors (geno-

types/individuals) within each population. The distributed spacing equation mea-

sures how well the Pareto optimal solutions (non-dominated solutions) are distributed

across these populations; a group of populations constitute a region. The equation

given in the book by Coello Coello et al. is explained by Srinivas and Deb [12, 85],

and is:

ι =

√√√√
q+1∑

i=1

(
ni − ni

σi

)2

(3.5)

where q is the number of desired optimal points and (q+1) is the dominated sub-region,

ni is the actual number of individuals in the ith sub-region of the non-dominated

region, ni is the expected number of individuals serving the ith sub-region of the

non-dominated region, and σ2
i is the variance of the individuals serving the ith sub-

region of the non-dominated region [85]. To illustrate this point, consider the following

example. A region is equally divided into five sub-regions, meaning each region has an

equal amount of physical space. Assuming the total population of the region consists

of 100 individuals, then the expected number of individuals in each sub-region would

be ni = 20. According to Srinivas and Deb [85], the variance is estimated as:

σ2
i = ni

(
1−

ni

P

)
for i = 1, 2, ..., q (3.6)

where P is the total population size, in this case 100. Thus, the variance is σ2
i =

20(1 − 5
100

) = 16. Srinivas and Deb also show that the variance for the dominated

region is the sum of the variances of the non-dominated regions (σ2
q+1 =

∑q
i=1 σ2

i );

ideally, distribution points would not exist in the dominated sub-region. Therefore,

the expected value of the dominated region is E[nq+1] = 0 [85]. Now, we determine

the actual number of individuals in each sub-region. If the number of individuals

that actually exist in each sub-region equals the expected number, the result is zero.
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Therefore, if the solutions are distributed optimally, the result of Eqn. 3.5 is zero. As

the distribution diverges from the optimal solution, the value obtained from Eqn. 3.5

increases.

The region of domination is purposefully omitted when translating the dis-

tributed spacing equation to the feature selection domain. This allows for the non-

dominated region to be interpreted as the entire hyperspectral signal (e.g., in the 12

class textile data set, 901nm-2500nm). The signal is then divided into sub-regions.

The sub-region division can be determined via a trade study for the type/class of

signal being operated on; this will determine the best locations for divisions, based

on some distinction of non-correlated regions. For example, the visible spectrum of

a hyperspectral signal can be divided into different color regions to provide clarifica-

tion. For our purpose, the individuals, as coined by Srinivas and Deb, are represented

as the selected features of our data. Based on these changes, the distributed spacing

equation (Eqn. 3.5) provides a good representation of distributed spacing for a feature

set in the data domain.

The adaptation of the distributed spacing from [12, 85] is defined as [11]:

ι =

√√√√
q∑

i=1

(
|Fsub(i)| − |F sub(i)|

σi

)2

(3.7)

where q is the number of sub-regions (Fig. 3.1), |Fsub(i)| is the actual number of

selected feature points in the ith sub-region, |F sub(i)| is the expected number of feature

points in the ith sub-region (if sub-regions are unequal in bandwidth, a weighting must

be applied), and σ is the standard deviation such that σi is the standard deviation

of the ith sub-region and is calculated as σi =
√

σ2
i , and σ2

i is the variance of the ith

sub-region, and is calculated as:

σ2
i = |F sub(i)|

(
1−
|F sub(i)|

N

)
for i = 1, 2, ..., q (3.8)
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where N is the total number of attributes or dimensions of a sample. NASAFS

determines the number and location of sub-regions (q) based on the structure of

the correlation matrix of the entire data set. If the sub-regions are unequal in size,

then a weighting (wsub(i) =
nsub(i)

N
) is applied to |F sub(i)|, where nsub(i) is the number of

dimensions (bandwidth) of the ith sub-region, and N is the total number of dimensions

(bandwidth) of the signal. The best distributed case (ι) is determined prior to the

execution of the feature selection process. This best case value for ι (Eqn. 3.7) is the

situation where the desired number of features of a feature set is divided equally into

each sub-region. This is based on the fraction of the expected number of features per

sub-region divided by the total of the expected number of features for the domain

(rounding up since a feature can not be split between sub-regions). This produces

the lowest possible ι value for this specific data set. The optimal ι (lowest ι value) is

then the baseline for all other values. To equate the appropriate distributed spacing

number for all other results of Eqn. 3.7, the baseline value is subtracted from each

value calculated.

A restriction is placed on bin size, in order to have the possibility of optimally

distributed features. This restriction is to ensure that the bin size is small enough,

based on the sub-region size, to allow for the appropriate number of features to exist

in each sub-region. This restriction on the bin size (η) is calculated as:

η =
⌈
wsub(s) |F |

⌉
, (3.9)

where wsub(s) is the weighting factor of the smallest sub-region, |F | is the total number

of allowed features, and ⌈·⌉ is the ceiling operator. This value of η is then divided

into the dimension/bandwidth of the smallest sub-region nsub(s), as shown:

β =
nsub(s)

η
(3.10)

where nsub(s) is the smallest sub-region. Therefore, in order to have an optimal dis-

tribution of features, the maximum bin size allowed is β.
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An equation for |F sub(i)| is:

|F sub(i)| =
|F |

q
wsub(i) (3.11)

where |F | is the feature set size, q is the number of sub-regions, and wsub(i) is the

weighting for each sub-region.

To explain the equations as they pertain to this type of problem using un-

equal sub-regions, consider the following example. Given a sample with 100 di-

mensions (N = 100), the signal is divided into five sub-regions, where one sub-

region consists of 40 dimensions and the other four sub-regions have 15 dimen-

sions each. For this example, we will set the number of features the algorithm

will select to six; this is a user-defined variable. Therefore, since sub-regions 1-

4 are identical (same number of dimensions), the expected number of features per

region for sub-regions 1-4 is |F sub(i)| =
(

6
5

) (
15
100

)
= 0.18 (Eqn. 3.11), and the vari-

ance is σ2
i = 0.18

(
1− 0.18

100

)
= 0.179 (Eqn. 3.8), which gives a standard deviation of

σi = 0.423, where i = 1...4. Similarly, for |F sub(5)| =
(

6
5

) (
40
100

)
= 0.48 (Eqn. 3.11),

the variance is σ2
5 = 0.48

(
1− 0.48

100

)
= 0.478 (Eqn. 3.8), and the standard deviation

σ5 = 0.691. The maximum bin size is determined as: η = (0.15)(6) = 0.9 (Eqn. 3.9);

this number is rounded up so that η = 1. Therefore, β = 15
1

= 15 (Eqn. 3.10). A bin

size of five is selected, to avoid exceeding the maximum bin size of 15; however, any

number less than 15 would be adequate in this case. Next, the best case situation is

calculated; for sub-regions 1-4, allot one feature |Fsub(i)| = 1 where i = 1...4, and for

sub-region 5, allot two features (|Fsub(5) = 2). This presents the best distributed case

for this situation. Therefore, the optimal ι value, rounded to the hundredths place,

is:

ι =

√(
1− 0.18

0.423

)2

(4) +

(
2− 0.48

0.691

)2

= 4.46(100) = 446.

(3.12)
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The value of ι = 446 and is now the baseline; it is subtracted from the actual iota

values obtained for any other calculated distribution of features. For the worst dis-

tributed case, it is observed that sub-regions 1-4 have zero features assigned to them

|Fsub(i)| = 0 where i = 1...4, and sub-region 5 contains all six allotted features, such

that |Fsub(5)| = 6. Since |F sub(i)|, σ
2
i , σi and q remains the same. The new observed

numbers for |Fsub(i)|, rounded to the hundredths place, produce:

ι =

√(
0− 0.18

0.423

)2

(4) +

(
6− 0.48

0.691

)2

= 8.03(100) = 803.

(3.13)

The baseline (best case ι value, 446) is subtracted from the worst case ι value (803)

to obtain an adjusted worst case value of 357. The adjusted worst case value is

significantly larger than zero. This is due to the fact that it is a highly correlated

distribution of the features. Now the distributed spacing values are bracketed for

this scenario, which determines the degree of optimal distribution of each feature set

calculated.

In order to incorporate the distributed spacing equation, and to ensure the

possibility of non-correlated selected features, the maximum number of features of

a feature set is defined as
∑q

i |F̂i|, where q is the number of sub-regions and |F̂i| is

the number of allowed features per sub-region. However, the variable |F̂i| is not the

maximum number of features that a sub-region can hold; it is the maximum allowed

number of features in each sub-region to ensure optimal distribution of features, where

optimality is defined by minimizing ι (Eqn 3.7). The value of |F̂i| is calculated as

|F̂i| =
⌈
wsub(i)N

⌉
where ⌈·⌉ is the ceiling function, wsub(i) is the weighting of each

sub-region, and N is the total number of dimensions of the data. The maximum

number of features that a sub-region can hold is dependent on the bin size, which is

determined by the user.

NASAFS ensures less correlated (non-redundant) feature sets by selecting fea-

tures based on a specific distribution space across the spectrum. The key to this
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process is determining how to divide the signal domain into appropriate sub-regions.

If the correlation statistic is used, q (shown in Eqn. 3.7) is required to be the number

of signal sub-regions, as determined by the correlation matrix of the entire data set.

Fig. 3.4 shows all the pairwise correlations of a set of hyperspectral data. The

matrix is positive semi-definite about the diagonal [52], and its structure produces sub-

regions of correlation. This structure is used by our method to produce the sub-regions

for our distributed spacing ι function. The correlation matrix of the data, as shown in

Fig.3.4, is calculated and the sub-regions are located automatically by NASAFS. The

process of locating the sub-regions of the correlation matrix is dependent on preset

variables, which can be adjusted for each data set. One of these variables defines the

correlation value threshold that determines one sub-region from the next. The other

two variables define a minimum width that must be surpassed in order to declare

the next sub-region. For example, Fig. 3.4 illustrates the correlation matrix of the 12

class textile data set. The threshold is set to 0.85 and the row variable is 50, while the

column variable is 100. For the 12 class textile data case, the method finds the index

of the row in column 1 that is less than the threshold; it then places a marker at that

location. It proceeds to row 2 column 2, and finds the index of the row in column

2 that is less than the threshold, and places a marker there. This process proceeds

down the diagonal for the entire matrix. Fig. 3.5 is a illustration of the markers and

their locations, based on the 12 class textile data set correlation matrix. After all the

markers are placed, the process then finds the column where the sequential marker

is separated by 50 rows. From that location, the process proceeds along that row

to the point 100 columns over from its original location. If it is determined that,

from the original location to the 100 subsequent locations, there are no other markers

with a row index less than the original marker index (assuming row 0, column 0 is in

the upper left corner), then a sub-region is established at the location of the original

marker. Then the process moves 101 columns from the newly determined sub-region

and repeats. If it is determined that there is a marker with a row index less than the

original marker index (within the 100 columns), the process starts over at the next

3-14



200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

1400

1600

0.9823 0.6688 0.7066 0.4348 0.3936

Figure 3.4: Correlation matrix of the 12 class textile data set. The lines denote
the different sub-regions and the average correlation value of that region is shown in
the box. The row and column variables for the sub-region locator method are 50 and
100, respectively.

marker location from the original marker. Fig. 3.6 shows the sub-regions of the 12

class textile data set, if the column and row variables are 10 and 25, respectively.

The best case (ι) is calculated, where best case ι provides the least-correlated

case that is based on the number of desired features in the feature set and the number

of sub-regions of the spectral domain (e.g., if the feature set is to contain six features,

then for the case in Fig. 3.1, there would be two features per sub-region). As previously

stated, the optimal (ι) is used as a baseline when determining the actual correlation

of the selected feature set. Ideally, a value of zero for the distributed spacing (ι)

equation indicates a perfect distribution across the domain. However, the best case

distributed spacing value might not be zero, depending on the divisions created by

the sub-regions and the number of features designated for the feature set. In order

to obtain an indication of optimality when each (ι) value is calculated, the optimal
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Figure 3.5: This figure illustrates the placement of the markers for determining the
sub-regions of the correlation matrix. The row and column variables for the sub-region
locator method are 50 and 100, respectively.

distributed case and the worst distributed case are determined first. The best case (ι)

value is then subtracted from each calculated value of (ι) to determine the degree of

optimality produced by each feature set. The best and worst case values provide the

upper and lower bounds; these are useful in determining an acceptable percentage of

distribution. The actual (ι) calculation can now be evaluated as a percentage, allowing

for the user to define a desired percentage of distributed spacing for a feature set.

The best case (ι) is determined by allotting one feature per sub-region, start-

ing with the sub-region that has the lowest average correlation value. The process

continues until the number of desired features is exhausted. If the number of desired
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Figure 3.6: Correlation matrix of the 12 class textile data set. The lines denote the
different sub-regions, where the row and column variables for the sub-region locator
method are 10 and 25, respectively.

features is greater than the number of sub-regions, the process continues allotting

features to sub-regions, beginning with the sub-region that has the lowest correlation

value; in this instance, features will be alloted to a sub-region until that sub-region

reaches its expected number of features (|F sub(i)|). The worst case (ι) is calculated

by allotting all of the number of desired features to the sub-region that has the worst

(highest) average correlation value.

The expected number of features in each sub-region (|F sub(i)) is determined by

the average correlation value and the spectral bandwidth of the ith sub-region; this is
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computed as:

|F sub(i)| =

(
|F | ∗

(nsub(i)

N

)
+ |F | ∗

(
1−r̄sub(i)∑
j 1−r̄sub(j)

))

2
(3.14)

where |F | is the feature set size,
∑

j is the sum over all sub-regions, nsub(i) is the

spectral bandwidth of region i, N is the total spectral bandwidth of the signal, and

since r̄ is the average correlation coefficient, then r̄sub(i) is the average correlation

coefficient of each region. In Eqn. 3.14,
nsub(i)

N
is the fraction of bandwidth of sub-

region i and
1−r̄sub(i)∑
1−r̄sub(i)

is the fraction of the correlation value of sub-region i.

If a feature set meets the acceptable optimal spacing, it is allowed to proceed to

the heuristic. If not, that feature set is discarded; a new feature set is then selected

at random and the process is repeated.

3.1.1.3 Step 3: The Heuristic. The heuristic has a two-fold approach

to determine a feature set’s goodness. The first part encompasses dependence mea-

sures, and the second uses distance measures. Combining these two techniques is the

first step to optimizing the evaluation function The distance measure determines a

distance between an in-class feature set and the respective out-of-class feature set. If

the distance exceeds a previously established threshold, a high value is returned for

that feature set. The dependence measure uses statistics to stratify the selected fea-

ture set. The value returned for that feature set is dependent on the correlation value

between the classes. The dependence measure component of the heuristic consists of

comparing the cross-covariance of the two feature sets (the reference class and the

target class). The cross-covariance for the heuristic is specifically defined as:

xcovxref ,xtgt
= E[(xref)− µxref

)(xtgt − µxtgt)] (3.15)

where E[·] is the expectation, xref is the reference feature set, xtgt is the target feature

set, µxref
and µxtgt

are the means of the reference and target feature sets, respectively.

If the cross-covariance is one, then the feature sets are highly correlated and the
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Figure 3.7: Flow chart for the heuristic function of NASAFS.

two feature sets are less correlated as the value of the cross-covariance deviates from

one. The cross-covariance is preferable to the cross-correlation in terms of providing

a better measure of comparison between the two spectral measurements. It can be

shown from Eqn. 3.15 that the cross-covariance is equal to the cross-correlation minus

their means. This neutralizes any bias that can occur from differing signal strengths.

The heuristic returns values based on a sequential set of calculations. A flowchart

of the heuristic is shown in Fig. 3.7. The cross-covariance xcovxref ,xtgt
(Eqn 3.15) is

calculated using a feature set of the reference class that corresponds to the same fea-

ture set of the target class (Fig. 3.1). The cross-covariance is calculated using the

same process as is used in the training function portion of the algorithm (see Sec-

tion 3.1.1.1). However, during training, each bin is evaluated individually. In the

heuristic, the cross-covariance function evaluates the feature set (where each feature,

of the set, is a bin), not each individual feature. The cross-covariance of the feature

set is accomplished for the target samples versus the reference samples. This value is
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compared to the covariance threshold kh. If xcovxref ,xtgt
≥ kh, then (1− xcovxref ,xtgt

)

is returned per Eqn. 3.19. This means, if the covariance indicates the two feature sets

are highly correlated, then the returned value corresponding to that set of features is

low. If the value of the covariance is less than kh, then those two feature sets continue

to the autocorrelation section of the heuristic. The autocorrelation R of a random

variable X, (RX), is defined as:

RX = E[X(t1)X(t2)]

=
∑

k

∑

r

xkyrpX(t1),X(t2)(xk, yr)
(3.16)

where E[·] is the expectation, X(t1) and X(t2) are random variables that are time

shifted, pX(t1),X(t2)(xk, yr) is the multivariate probability mass function of X(t), and

ti is the time shift. The autocorrelation determines similarity between observations

of the same signal that are shifted in time [52]. It is useful in this application because

it acts as a kernel. If there is a difference between the two signals, the distance

between them is exaggerated. The absolute distance, D, between the autocorrelation

of the target feature set value and the autocorrelation of the reference feature set

value,D(Rxref
, Rxtgt

), is computed as:

D(Rxref
, Rxtgt

) =
∣∣Rxref

−Rxtgt

∣∣ (3.17)

where |·| is the absolute value. If the distance D(Rxref
, Rxtgt

) is less than a threshold

dh, (1 − xcovxref ,xtgt
) is returned to the search algorithm. If it is greater than the

threshold, then
∣∣xcovxref ,xtgt

∣∣+ (1− xcovxref ,xtgt
) is returned to the search algorithm.

The threshold (dh) is initially set by the user; however, if dh is exceeded, the threshold

is updated; this forces the next set of features to be a better solution than the previous

set, as in:

dh = dh +

∣∣dh −D(Rxref
, Rxtgt

)
∣∣

2
. (3.18)
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The heuristic h is expressed as:

h =





1− xcovxref ,xtgt

if xcovxref ,xtgt
≥ kh,

∣∣xcovxref ,xtgt

∣∣ + (1− xcovxref ,xtgt
)

if xcovxref ,xtgt
< kh and D(Rxref

, Rxtgt
)− dh ≥ 0,

1− xcovxref ,xtgt

if xcovxref ,xtgt
< kh and D(Rxref

, Rxtgt
)− dh < 0.

(3.19)

The following is an example of the heuristic. If the cross-covariance value of the

target feature set to the reference feature set is 0.54, and the covariance threshold is

set to 0.85, then the feature sets are allowed to pass to the distance measure portion of

the heuristic. If the value of the distance measure for the two feature sets is 0.4, and

the distance threshold is dh = 0.1, then for this feature set, a value of 1 is returned

to the feature selection function; the new distance measure threshold is then updated

to dh = 0.1 + |0.1−0.4|
2

= 0.25.

3.1.1.4 Steps 4-6: Feature Set Updates. This step begins the three

stage search process. While the use of each stage is non-repetitive initially, it is re-

peated until convergence. The initialization process starts with NASAFS selecting a

specific number of random features as the starting feature set (where each feature,

of the set, is a bin). The first part of the evaluation process is determining if the

feature set meets the accepted optimal spacing (Eqn. 3.7 and Section 3.1.1.2). The

second part of the evaluation process is accomplished by the heuristic (Fig. 3.7 and

Section 3.1.1.3). The third stage, candidacy determination, occurs when the heuristic

value is returned to the simulated annealing function. Once all three stages have been
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accomplished and an initial feature set has been successfully obtained, the three stage

process (selection, evaluation, and candidacy determination) repeats. One feature is

replaced by a randomly selected feature. This new set of features is evaluated for

desired distributed spacing. Once this spacing is achieved, the feature set is evalu-

ated and given a value by the heuristic; this value is then returned to the simulated

annealing process for candidacy determination (Eqn. 3.19). The process of replacing

features of the feature set is repeated until convergence. Once convergence is obtained,

the current set of features becomes the solution.

Simulated annealing determines the retention of a feature set based on the value

returned by the heuristic, the higher the value, the greater the probability of retention.

However, it is possible that an inferior feature set might be kept in hopes of achieving

a better solution on the next iteration. This probability is based on the evaluation

of an exponential function exp
err
T , where err is the new feature set’s heuristic value

minus the previous feature set’s heuristic value, and T is the time decayed temperature

(based on the number of iterations of the search). The random chance is determined

by generating a random value (Yrand) between zero and one; if this value is less than

or equal to the exponential value, the feature set is kept, as shown:

F =






Fnew if Yrand ≤ eerr/T ,

Fprevious if Yrand > eerr/T

(3.20)

where Fnew is the new feature set, Fprevious is the previous feature set, and F becomes

the current feature set. The time decayed temperature (T ) is decreased by a factor of

0.9 for each time a new feature set is evaluated. The simulated annealing pseudo-code

is shown in Algorithm 1 [74].

3.1.2 Final Feature Selection Process. This is a process of selecting fea-

tures over several Monte Carlo simulations and across multiple class pairwise feature

selections. It uses solution frequency distributions (histograms) to determine the fea-

tures common to all pairwise histograms for each reference class. This methodology
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Algorithm 1: Simulated Annealing pseudo-code [74]

function SA(problem,schedule) returns a solution state
input : problem, a problem

schedule, a mapping from time to “temperature”
local variables : current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current ← Make – Node(Initial-State[problem])
for t← 1 to inf do

T ← schedule(t)
if T = 0 then

return current
next ← a randomly selected successor of current
△E ← Value(next) - Value(current)
if △E > 0 then

current ← next
else

current ← next only with probability e△E/T

is based on the correlation matrix of the data and the distributed spacing techniques

discussed earlier.

First, this requires two user-defined variables: Hhit and Aval. The Hhit is con-

strained from zero to one and is the ratio of the number of times a feature is selected

(across all histograms for that reference class) to the total number of histograms for

that reference class. For example, if there are ten histograms for one reference class,

then an Hhit value of 0.8 could be used. This means that if a specific feature is selected

in eight (or more) out of ten histograms, it is possible it will be a good discriminating

feature for that reference class. Ideally, an Hhit value of 1 would be used; however,

it is not likely that a specific feature will be selected in all histograms. Example his-

tograms can be seen in Fig. 3.8. The Aval is represented as a percentage that is based

on the largest specific class ordinate value out of all the features in all the histograms.

It represents the minimum acceptable number of times that a feature is selected as

a member of a feature set for a specific reference class. It can also be defined as
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the number of times that a feature was part of the feature set that NASAFS chose

for each of the Monte Carlo simulations. Aval ensures that features available to be

selected are not a chance select.

In order to ensure the distributed spacing of the feature set selected, This tech-

nique uses the same sub-regions as NASAFS. The feature in each sub-region that

meets the Hhit criteria and has the best value in that sub-region is chosen. Once it

has determined this for all the sub-regions, the number of features for the feature

set is selected based on the features with the greatest value. The features are placed

until the desired number of features for the set is obtained. If the number of features

needed for the feature set is greater than the number of sub-regions by one feature,

then it picks the extra feature based on the next highest valued attribute (Tnext(high))

across all sub-regions, where Tnext is the next attribute. If more than one feature is re-

quired to finish out the feature set, it then picks the largest ordinate valued attribute

(Tnext(high)) and compares it to the largest ordinate valued attributes of the other

sub-regions. The attributes with the lowest correlation coefficients are selected. These

two attributes are then added to the feature set. This process is repeated until the

feature set is satisfied or until none of the remaining attributes meet the user-defined

Hhit and Aval criteria. In some cases, the feature set may not be completely filled.

The NASAFS pseudo-code is shown in Algorithm 2.

To further understand this process, consider the following example; for this

instance, refer to Fig. 3.8, using an Hhit of 0.75 and an Aval of 0.05, and a feature

set size of seven. This process determines all the features that are hit at least three

out of the four times and that have a value greater than 0.05; it does this for each

region of all four of the histograms. The sum of the values of the features that pass

the Hhit and Aval criteria is used to determine the overall feature value. This overall

feature value is used to select the feature with the largest value for that region; this

is noted in Fig. 3.8 by the circle labeled 1 in each region. Since there are only five

regions and seven features for the feature set, there are two more features to pick. The

feature with the largest overall value that passed the Hhit and Aval criteria and was
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Algorithm 2: Non-correlated Aided Simulated Annealing Feature Selection
(NASAFS) pseudo-code

Input: Data set of samples with labels and user defined variables(udv)
Output: Feature set for a class versus all other classes
CMAT ← matrix of pairwise data correlation coefficients
// Bin data, see Fig. 3.1 and 3.3
DataBinned ← bin data based on BinSize(udv)
SubRegions ← Defined from CMAT based on regions of significant correlation, see Section 3.1.1.2 and
Fig. 3.4
while NumClasses 6= Number of target classes do

INITIALIZATION

begin

// Compute cross-covariance threshold
for j = 1...number of bins do

for i = 1...number of reference samples do

kh[j, i] ← xcov(xj,i, xj,K)

kh(min) ← minimum of kh

// Monte Carlo Simulation
while Monte < NumRuns(udv) do

// Select initial feature set F
Iota ← Value of worse case distributed spacing, see Section 3.1.1.2
// Iota must meet the distribution acceptability
while Iota > DistAcceptable(udv) do

F ← Randomly select NumFeatures(udv) new features
Iota ← Value of F // Based on distributed spacing Eqn. 3.7

Convergence ← No // Initialized to ‘no’
while Convergence = no do

EVALUATION

begin

// heuristic evaluates feature set, determine h
Dh ← 0.002 // Initialized distance threshold
if (xcov(xref , xtgt) ≥ kh(min)) or [xcov(xref , xtgt) < kh(min) and

Dist(Rxref
, Rxtgt ) < Dh] then

h ← 1− xcov(xref , xtgt)

if (xcov(xref , xtgt) < kh(min)) and Dist(Rxref
, Rxtgt ) ≥ Dh then

h ← |xcov(xref , xtgt)|+ 1− xcov(xref , xtgt)
Dh ← increased

// R is the aurocorrelation and Dist is the Manhattan distance

CANDIDACY DETERMINATION

begin

SA ← h,T // see SA pseudo code Alg. 1
T ← T × schedule // decrements T via schedule

SELECTION

begin

// Select a new feature set
Iota ← Value of worse case distributed spacing, see Section 3.1.1.2
while Iota > DistAcceptable(udv) do

F ← Replace one feature with a randomly picked feature
Iota ← Value of F // Based on distributed spacing Eqn. 3.7

FHisto(refi)
← current F // Histogram of feature sets for each reference class

NumRuns ← decrement NumRuns

MasterHisto ← combination of all histograms (FHisto(refi)
) // based on Hhit(udv) and Aval(udv)

Fmaster ← the top feature of each sub-region of MasterHisto until NumFeatures
while |Fmaster| 6= NumFeatures do

if NumFeatures = |Fmaster|+ 1 then

Fmaster ← Fmaster+ next highest feature over all sub-regions
else

Fmaster ← Fmaster+ next highest feature over all sub-regions with lowest correlation
coefficient to last feature added to Fmaster
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Figure 3.8: Histogram of selected features for: (a) 65% Polyester / 35% Cotton vs
80% Nylon / 20% Spandex, (b) 65% Polyester / 35% Cotton vs 94% Polyester / 6%
Spandex, (c) 65% Polyester / 35% Cotton vs 100% Cotton, and (d) 65% Polyester
/ 35% Cotton vs 100% Silk. The red lines are the divisions of the sub-regions. The
green line is the 0.05 (Aval) criteria line. The sub-regions labeled A - E have an average
correlation coefficient of 0.9823, 0.6688, 0.7066, 0.4348, and 0.3936 respectively. The
feature set selection process is indicated by the labeled circles for a feature set size of
seven.
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not picked on the first round is selected as the 6th feature; this is denoted in Fig. 3.8

by the circle labeled number 6. Feature number 7 is determined by evaluating the

correlation coefficient of the feature with the highest overall regional value, except

the region with the 6th feature. The feature with the lowest correlation coefficient as

compared to that of feature 6 is selected; this is shown in Fig. 3.8 as the circle labeled

7. Note that for the first region of the histogram “65% Polyester 35% Cotton vs 100%

Silk” (Fig. 3.8(d)), none of the features meet the Hhit criteria; therefore, the labeled

1 circle is omitted to emphasize this fact.

3.2 Non-correlated Aided Simulated Annealing Feature Selection - In-

tegrated Distribution Function Overview

Our second version of NASAFS incorporates several improvements that reduces

computation cost, increases accuracy and is more simplistic in design. The main

contribution of the second version is the integration of the distributed spacing tech-

nique in the heuristic. NASAFS uses the distributed spacing method as a cross-check,

where the second version uses the distributed spacing value as part of the value used

by SA to determine feature set goodness. This integration requires several changes to

the distributed spacing equation as well as the elimination of the correlation matrix

and sub-regions. These improvements also provide the determination of one-versus-

all feature set with fewer computations and only one histogram being created. Due

to these improvements, the second version is called: Non-correlated Aided Simulated

Annealing Feature Selection - Integrated Distribution Function (NASAFS-IDF).

While NASAFS and NASAFS-IDF are based on the same concepts, there are

a some minor changes and two significant changes from NASAFS to NASAFS-IDF.

One of the more important minor changes is based on the processing location of the

one-versus-all approach. Both versions build a histogram of feature sets using Monte

Carlo runs. However, NASAFS-IDF uses a one-versus-all approach that occurs in the

feature selection stage, whereas NASAFS is a pairwise process until the final feature

selection stage. This improvement eliminating the need to build pairwise histograms
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of feature sets as in NASAFS. The other more important minor change is the need to

determine the correlation matrix of the data. NASAFS-IDF also eliminates both the

need for the correlation matrix and the assignment of sub-regions that NASAFS uses

to guide the distributed spacing function. The first significant change in NASAFS-

IDF is that the distributed spacing function is incorporated into the heuristic vector,

which is optimized by the simulated annealing search method [4]. The second signifi-

cant change is the new adaption of the distributed spacing function to accommodate

this new paradigm. These improvements reduce computational costs and algorithm

complexity; this increases both robustness and accuracy, while maintaining a low cor-

related feature set. The three stage process of selection, evaluation, and candidacy

determination, as used in NASAFS, is also incorporated into NASAFS-IDF. However,

the approach is more streamlined due to the improvements mentioned above.

3.2.1 NASAFS-IDF Methodology . NASAFS-IDF, shown in Fig. 3.9, works

as follows:

1. Bin the data, xj ⊆ Xi where xj is the jth bin of the data sample Xi and |xj | =

Nbin and i = 1...M , where M is the total number of samples. Determine the

cross-covariance threshold, kh = min[xcov(xj,i, xj,K)], where xj,i is the jth bin of

the ith sample, and i and K are the same class and i = 1...M , j = 1...m where m

is the total number of bins of a sample, and K is defined as {K = 1...M : K 6= i}

(Section 3.2.1.1).

2. Randomly select a feature set, F ⊂ Y where Y = {x1, x2, x3, ...xm} and |F | = z

where z is defined by the user.

3. (a) Heuristic, hN , evaluates the feature set (Eqn. 3.25, Section 3.2.1.2). (b) Com-

pete the return scalar value using the simulated annealing search (Section 3.2.1.3).

4. Replace a feature in the feature set with a random pick of the remaining features;

evaluate the result with the heuristic hN (Section 3.2.1.4).

5. Repeat steps 3 and 4 until convergence (Section 3.2.1.4).
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Figure 3.9: Diagram depicting the flow of feature selection method NASAFS-IDF
(within dashed line), and its connection to a classification method (outside dashed
line).

3.2.1.1 Step 1: Training (Feature Selection Covariance Threshold).

NASAFS-IDF trains on the data in the same manner as NASAFS (Section 3.1.1.1);

however, where NASAFS employs sub-regions, NASAFS-IDF does not.

3.2.1.2 Step 2: Distributed Spacing. The functionality of the dis-

tributed spacing technique is revised for NASAFS-IDF. In NASAFS, the distributed

spacing function operated off of sub-regions of the data domain; in NASAFS-IDF, the

distributed spacing operates without the constraints of the sub-regions across the data

domain. The distributed spacing function of NASAFS-IDF calculates the degree of

distribution across the entire domain (no sub-region constraints), allowing for a more

dynamic distribution of features than is possible with NASAFS. This version of the

distributed spacing technique closely resembles the original purpose of the technique
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used in multi-objective optimization problems [12]. Instead of determining the distri-

bution of Pareto optimal solutions across the non-dominated region, NASAFS-IDF

determines the distribution of the features of a feature set across the data domain.

The distributed spacing equation (ι) for NASAFS-IDF is defined as:

ι =

√√√√
|F |−1∑

i=1

(
ni − ñ

σ

)2

(3.21)

where |F | is the cardinality of the feature set, ni is the number of attributes/dimen-

sions between fi and fi+1, fi is the ith feature of the feature set, ñ is the number of

attributes/dimensions expected between fi and fi+1 if it is optimally spaced, and σ is

the standard deviation (from Eqn. 3.23). Optimal distribution is defined as features

that are equally spaced throughout the entire data domain. For example, a feature

set that is |F | = 6 and has a data domain that has 100 attributes/dimensions would

have an ñ = 20, which produces an optimal distribution resulting in ι = 0, the best

case distribution. The equation for ñ is:

ñ =
N

|F | − 1
(3.22)

where N is the total number of attributes/dimensions across the data domain. The

variance σ2 is defined as:

σ2 = ñ

(
1−

ñ

N

)
. (3.23)

As it is shown with the best case ι, optimally distributed where ι = 0 and

denoted as ιbest, the worst distributed case is determined by calculating the ι equation,

so that each feature is consecutive. This equation for the worst case ι (ιworst) is

determined as shown:

ιworst =

√

|F | − 1

(
1− ñ

σ

)2

. (3.24)
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The worst case, ιworst, is used to provide a bounded range of distribution based on the

dimension size of the data set and the size of the feature set. This bounding allows

for a percentage of distribution to be defined by the user and is used in the final stage

of the feature selection method of NASAFS-IDF.

In order to prevent the distributed spacing equation from producing inaccurate

results for any combination of feature locations in the feature set, certain mathemati-

cal scalings are levied. If ni is determined to be larger than ñ, then ni will be assigned

the value of ñ (i.e ni = ñ). This is necessary to prevent erroneous values of ι in cases

where feature spacing does not warrant the ι value calculated. It is possible to have

one or more ni larger than ñ, which would produce a result larger than the worst case

ι (ιworst). Therefore, the above constraint is enforced to provide bounds and keep the

ι value pertinent to the purpose of this problem. The following example provides a

better understanding of this constraint. Consider a data domain of 100 dimensions,

and a feature set size of six. For this case, ñ = 20, σ = 4, and iotaworst = 10.62. If a

specific feature set is picked with the features (5, 6, 7, 8, 9, 100), then the distributed

spacing equation would return a value of ι = 20.13. This is well beyond the value of

the worst case (ιworst), yet it is preferable to a worst case scenario, since at least one

of the features is not adjacent to the rest of them. In order to give this feature set a

relativistic value that can be compared to other feature sets, the above mathematical

constraint (ni = ñ) is imposed; therefore, for the distance between f5 and f6, the value

is n5 = 20. This constraint produces a new value of ι = 9.50. This new value is less

than the worst case value (ιworst) but close to the worst case, as would be expected

based on the feature set.

3.2.1.3 Step 3: The Heuristic. The heuristic incorporates the two-

fold approach, dependence and distance measures, in order to determine a feature

set’s discriminatory capability. This is similar to NASAFS; however, NASAFS-IDF

differs from NASAFS in its incorporation of the distributed spacing function. The

purpose of the distributed spacing function in NASAFS is to provide a cross-check
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of the feature set, prior to its being evaluated by the heuristic. NASAFS-IDF uses

its distributed spacing function within the heuristic, as an objective that is weighted

and vectored along with the dependence and distance measures. This new heuristic

value is scalarized and then optimized by the simulated annealing process. In cases

where there are multiple objectives, a weighting scheme is typically used, in which all

of the weights sum to 1 (i.e. W1 +W2 + ...+Wk = 1). However, instead of performing

a multi-objective optimization on the objectives of this heuristic, an assumption is

made; it is assumed that the most important objective is the discrimination capability

of the heuristic. It is necessary to be able to discriminate between classes, regardless

of how the features are distributed across the domain. Selecting a feature set due

to the optimization of the distribution of features, regardless of the discriminatory

capability, would be counterproductive. Therefore, the heuristic of NASAFS-IDF,

hN , is:

hN = Aγ + h (3.25)

where A ∈ {0, 0.5, 1} is the weight applied to the result of the distributed spacing ratio

γ, and h is defined in Equation 3.19. The distributed spacing ratio (γ) is a normalized

difference of the worst case ι, Equation 3.26, and the actual ι of the current feature

set. As the actual ι becomes more optimal (i.e. closer to 0), the value of γ approaches

1. Therefore, the distributed spacing objective is bounded between 0 and 1. The

equation for γ is:

γ =
ιworst − ιactual

ιworst

. (3.26)

The value of A can be one of three discrete values: 0, 0.5, or 1. These weight

values are determined by the discriminatory value of the feature set. If the feature

set has little or no ability to discriminate between classes, then A = 0. Subsequently,

if it has moderate ability, then A = 0.5; if it has strong ability, then A = 1. In
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essence, if the feature set is a poor discriminator, the overall value returned by the

heuristic will not be improved, regardless of feature distribution. The value assigned

for distribution will not decrease the value assigned for discrimination; however, it

can be increased, depending on the distribution and its discriminatory capability.

The equation for A is given by:

A =






0 if xcovxref ,xtgt
≥ kh,

1 if xcovxref ,xtgt
< kh and D(Rxref

, Rxtgt
)− dh ≥ 0,

0.5 if xcovxref ,xtgt
< kh and D(Rxref

, Rxtgt
)− dh < 0.

(3.27)

Where xref is the reference feature set, xtgt is the target feature set, kh is the covariance

threshold, D(Rxref
, Rxtgt

) is the absolute distance of the feature sets’ autocorrelation

values for the target and reference samples, and dh is a distance threshold.

The heuristic of NASAFS-IDF performs a one-versus-all approach, instead of the

pairwise process performed in NASAFS. This new process in NASAFS-IDF compares

the covariance values of the specific feature set for all the classes being tested. The

worst case value (the highest covariance value) of all these values is then selected as the

covariance value; this is used to determine the appropriate scalar value of Eqns. 3.19

and 3.27. It is the feature set of the class that produced the highest covariance

value that is used in determining the distance values in Eqn. 3.17. Comparing all

classes simultaneously and choosing the worst case scenario allows for an accurate

discrimination of classes and considerably reduces computational costs. The value

calculated by the heuristic is sent to the simulated annealing process to determine

feature set acceptance.

3.2.1.4 Steps 4-5: Feature Set Updates. After the first evaluation by

the heuristic, the three stage process (selection, evaluation, and candidacy determi-

nation) repeats. One feature within the selected feature set is replaced by a feature

that is randomly selected from the set of available features. The resulting feature
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set is then evaluated by the heuristic, as is accomplished according to step 3 (Sec-

tion 3.2.1.3), and the value is then returned to the simulated annealing process for

candidacy determination. This process is repeated until convergence; at this point,

the current feature set is the solution.

3.2.2 Final Feature Selection Process. Since NASAFS-IDF is a stochastic

process, Monte Carlo simulations are performed and a histogram exists for the refer-

ence class versus all other classes. Therefore, this part of the NASAFS-IDF method is

to determine the feature set from the histogram that provides the best classification

possible, based on the percentage of optimal distribution desired by the user. The

variables HHit, and Aval are no longer needed.

The values of the histogram are ranked from highest to lowest; the feature set is

picked from this order, based on the percentage of distribution specified. The highest

ranked feature is chosen, and becomes a feature of the feature set. Then the next

highest feature is chosen; however, it must be a feature that exists outside of a specified

area that is centered on each feature of the feature set. This area is determined by a

distance measure (S) and is stipulated by the percentage of acceptable distribution.

This distance is given by:

S =

〈
ñ−


σ



√

(ιallowed)
2

|F | − 1





〉

(3.28)

where ñ is the expected number of attributes/dimensions between fi and fi+1 if op-

timally spaced (Eqn. 3.22), σ is the standard deviation given by Eqn. 3.23, 〈·〉 is the

round function, |F | is the cardinality of the feature set, and ιallowed is the allowed

distributed spacing based on the percent of acceptable distribution and is calculated

as:

ιallowed =

(
1−

[
%acceptable

100

])
ιworst (3.29)
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where %acceptable is the user-defined percentage of acceptable spacing desired, and ιworst

is defined by Eqn. 3.24.

Once an attribute is selected from the histogram to be a feature for the feature

set, the remaining attributes within the defined distance S around the selected feature

(in the histogram) are occluded from selection. This process is shown in Fig. 3.10.

In Fig. 3.10, the highest ranking feature is determined (1st feature picked), and is

indicated in red; the attributes that are no longer viable options are occluded, as

shown with the green box. After these attributes are eliminated, the next largest

attribute is selected from the remaining attributes; this attribute then becomes the

next feature for the feature set, and it is denoted in Fig. 3.10 as 2nd feature picked.

The surrounding attributes that are within the defined distance are then occluded,

as indicated by the green box around the 2nd feature picked. This process of feature

selection and subsequent attribute occlusion repeats until the feature set is filled.

Figure 3.11 shows the histogram created for the texture data set, processed with a

35% acceptable distribution and a feature set size of six; the dotted line indicates

the attributes selected and their order of selection. The NASAFS-IDF pseudo-code

is shown in Algorithm 3.

Fig. 3.12 illustrates the acceptable spacing technique. For example, if the do-

main is 100 dimensions and the feature set size is six, then optimal spacing occurs

when there are exactly 20 dimensions between each feature, as shown in the top num-

ber line of Fig. 3.12. If instead an 80% acceptable spacing is chosen, there are multiple

possible solutions; one possible solution is shown in the number line at the bottom of

Fig. 3.12, where the distance spacing (S, from Eqn. 3.28) for this particular example

is 16. Therefore, the acceptable distribution is variable, dependent on the percent

acceptable distribution determined by the user. The percent acceptable distribution

may also be limited by the data set and the size of the feature set desired.
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Algorithm 3: Non-correlated Aided Simulated Annealing Feature Selection
- Integrated Distribution Function (NASAFS-IDF) pseudo-code

Input: Data set of samples with labels and user defined variables(udv)
Output: Feature set for a class versus all other classes
INITIALIZATION

begin

// Bin data, see Fig. 3.1 and 3.3
DataBinned ← bin data based on BinSize(udv)
// Compute cross-covariance threshold
for j = 1...number of bins do

for i = 1...number of reference samples do

kh[j, i] ← xcov(xj,i, xj,K)

kh(min) ← minimum of kh

// Monte Carlo Simulation
while Monte < NumRuns(udv) do

// Select initial feature set F
F ← Randomly select NumFeatures(udv) new features
Convergence ← No // Initialized to ‘no’
while Convergence = no do

EVALUATION

begin

// heuristic evaluates feature set, determine h
Dh ← 0.002 // Initialized distance threshold
if (xcov(xref , xtgt) ≥ kh(min)) or [xcov(xref , xtgt) < kh(min) and

Dist(Rxref
, Rxtgt ) < Dh] then

h ← 1− xcov(xref , xtgt)

if (xcov(xref , xtgt) < kh(min)) and Dist(Rxref
, Rxtgt ) ≥ Dh then

h ← |xcov(xref , xtgt)|+ 1− xcov(xref , xtgt)
Dh ← increased

// R is the aurocorrelation and Dist is the Manhattan distance
A ← ∈ {0, 0.5, 1} // depends on h, Eqn. 3.27
γ ← distribution value, see Eqn. 3.26 and 3.21
hN ← Aγ + h

CANDIDACY DETERMINATION

begin

SA ← hN ,T // see SA pseudo code Alg. 1
T ← T × schedule // decrements T via schedule

SELECTION

begin

// Select a new feature set
F ← Replace one feature with a randomly picked feature

MasterHisto ← current F // Histogram of feature sets
NumRuns ← decrement NumRuns

Fmaster ← top feature of MasterHisto
S ← required distance based on acceptable distribution, Eqn. 3.28
for u = 1...NumFeatures −1 do

Fmaster ← next top feature not occluded by distance ‘S’ around previously selected feature,
Section 3.2.2
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Figure 3.10: This is an example of the final feature selection process for 100%
Cotton Woven, with acceptable distributed spacing set to a 35% optimal distribution.
The order of feature assignment is indicated; green boxes indicate the attributes that
are occluded due to feature selection.

3.3 Correlation Detection Method

The correlation detection method (CoDeM) is a classification method which

uses the same principle of statistical evaluation of feature sets as both NASAFS and

NASAFS-IDF. CoDeM calculates the accuracy results, and allows for the addition

of additive white Gaussian noise, if desired. CoDeM performs detection by labeling

a sample as either in-class or out-of-class, as compared to the reference sample; an

out-of-class designation simply indicates the sample is not the same as the reference

class. CoDeM uses the average value of each feature for its calculations, where a

feature is a bin that can contain one or more attributes. Fig. 3.13 illustrates the

feature averaging technique; in this diagram, the bin size is three and the feature set

size is four. A flow chart showing the process of CoDeM is shown in Fig. 3.14. Once

the data is obtained from the feature selection method, CoDeM loads the features

(designated by the feature set) of the noisy reference samples and the features of
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Figure 3.11: Histogram created by NASAFS-IDF, and used by final feature selection
stage, to determine a feature set for the reference class. The dashed line indicates
feature selection. This histogram is of the first class of the texture data set.

the single noisy average sample; CoDeM then sends them to the training function to

obtain a covariance threshold kCoDeM and a distance threshold dCoDeM . It determines

the worst cross-covariance (lowest) using every combination of the reference samples

(as many samples as the user allows it to train with); this is accomplished for each

corresponding feature of the feature set of the reference class.
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CoDeM loads every test class sample and adds noise to each one, as designated

by the noise power value; it then separates out only the features as designated by

the reference class feature set and takes the mean of each feature (Fig. 3.13). The

cross-covariance xcovxref ,xtgt
is calculated from the mean of the clean reference class

features to the mean of the noisy target class features.

To account for the noise and calibration differences during data collections that

can lead to inaccurate classifications, the distance threshold (dCoDeM) is calculated

using a random sampling of the reference samples. The autocorrelations of both the

clean reference sample feature set and the average noisy reference sample feature

set are used to determine the distance threshold. If the current distance is greater

than the previous distance, the threshold is updated by adding a fraction of the new

distance to the previous distance, as shown:

dCoDeM =






dCoDeM

if dCoDeM > di+1,

dCoDeM + 1/2 (di+1)

if dCoDeM ≤ di+1,

(3.30)

where dCoDeM is initially set to the first distance threshold value, and di is the distance

represented as: di =
∣∣∣Rxrefi

(clean)−Rxref
(noisy avg)

∣∣∣, (noisy avg) refers to the aver-

age of the noisy reference samples, i = 1, 2, ..., number of samples chosen, Rxref
(clean)

is the autocorrelation of the clean reference class feature set and Rxref
(noisy avg) is

the autocorrelation of the average noisy reference class feature set.

The cross-covariance (xcovxref ,xtgt
) is calculated from the mean of the features

of the clean reference class feature set to the mean of the features of the noisy target

class feature set. The absolute distance (dist) from the autocorrelation of the clean
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reference class feature set to the noisy target class feature set is calculated as (dist =
∣∣D(Rxref

, Rxtgt)
∣∣). Classification is determined as:

Class(XC
i , y) =





out-of-class

if xcovxref ,xtgt
≤ kCoDeM ,

out-of-class

if xcovxref ,xtgt
> kCoDeM and

dist ≥ dCoDeM ,

in-class

if xcovxref ,xtgt
> kCoDeM and

dist < dCoDeM .

(3.31)

where XC
i is the ith sample of the Sth class, and y is either 1 or 0 for in-class or out-

or-class, respectively. This process is expected to produce the most realistic results,

if an appropriate target sensor noise model is incorporated [17, 77].

3.4 Summary

This chapter detailed the processes of the novel feature selection methods,

NASAFS and NASAFS-IDF. Both methods determine an accurate feature set by

using a stochastic method and by selecting features that are non-redundant. The

two methodologies take different approaches, yet both produce excellent results. The

detector (CoDeM) is described in detail; it is based on the same methodology used in

both of our novel feature selection methods.
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IV. Experimental Results and Analysis

NASAFS and NASAFS-IDF are compared to ReliefF [48], GRLVQI [61], and the

Bhattacharyya feature selection methods [5]. The accuracy of the feature selection

methods are evaluated using the correlation-based (CoDeM) detector, the Minimum

Euclidean Distance (MED), Näıve Bayes [33], and C4.5 classifiers [73], as in [38].

Three different data sets are used in the evaluation of the above feature selection

methods. The first is a 12 class hyperspectral textile data set, shown over a range of

additive white Gaussian noise realizations. The second is the Lunar Crater Volcanic

Field data set (LCVF), a VI/NIR/SWIR(0.4−2.5 µm) 224-band, 30 m/pixel Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) image of the Lunar Crater Volcanic

Field in Nevada [10, 61, 62]. The third is a 7 class image texture data set taken from

the Brodatz samples and preprocessed using a 5 level wavelet decomposition [87].

The results are compared using contingency tables, correlation coefficients of

the feature sets, and overall accuracies, combined with the significance of the feature

selection methods, as defined by the Wilcoxen signed-rank test. Other comparisons,

such as the Pareto front, are provided to present a complete picture of the abilities of

NASAFS and NASAFS-IDF.

4.1 Comparison Tests

The contingency table is a tool used to compile the success of a classifier. From

the contingency table, five important statistical evaluations can be obtained: the

kappa statistic, commission error, omission error, producers accuracy, and consumers

accuracy [23]. The kappa statistic provides a means to evaluate the classifier’s ability

to predict the classification of the samples as compared to a random estimation of their

classification. If the kappa statistic is close to zero, then it suggests that the results

are most probably achieved by chance; if the result is closer to one, then it suggests

that the results are from accurate classification, not estimation. Commission error is

defined as the percentage of samples that are incorrectly classified, meaning that they

are identified as belonging to a class other than their actual class. Omission error is
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the percentage of samples that belong to a certain class, but were not classified as

belonging to that class. Producers accuracy is the percentage which shows the number

of correctly classified members of a class. Consumers accuracy is the percentage which

shows the number of samples correctly identified as belonging to a class, out of the

total number of samples identified by the classifier as belonging to that class. The

overall accuracy of the contingency table is the sum of the accurately classified samples

per class (calculated by taking the sum of the diagonal) divided by the total number

of samples used. As an example, a contingency table is shown in Fig. 4.14; it was

generated for the 12 class textile data set using Näıve Bayes, with 30% acceptable

spacing.

The Wilcoxon signed-rank test is a non-parametric statistical method used to

compare two similar measures or methods, typically when the data sets are not nor-

mally distributed [82]. It produces a test statistic, which can then be compared to a

critical values table. The result of this comparison is used to determine the level of

significance desired, based on rejection of the null hypothesis. By definition, the null

hypothesis cannot be validated; it can only be rejected or not rejected. The alterna-

tive hypothesis is contradictory to the null hypothesis; it is validated upon rejection

of the null hypothesis. For example, for our purposes, the null hypothesis is defined

as method A is not significantly better than method B ; the alternative hypothesis is

method A is significantly better than method B. In this example the hypotheses estab-

lish that the critical table to be used should be a one-tailed table; this is determined

by the directionality of the hypotheses. Based on this table, the level of significance

is then deduced and the null hypothesis is either rejected or not rejected [82, 92].

In multi-objective optimization problems, there are typically several solutions

to the problem, based on the objectives to be optimized. Of these solutions, some are

better than others, when regarding all the objectives considered; however, a set of so-

lutions exist in which no solution is completely better or worse than another solution.

If a solution cannot be completely dominated by another solution (i.e. no solution is a

better solution for all objectives concerned), it is part of the non-dominated solution
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set. In this solution set, all solutions are equally viable; some solutions may be better

than others at achieving a particular objective, but all the solutions are acceptable.

The non-dominated solution set can be compiled into a list; this list is termed the

Pareto Front [83, 84]. Any of the Pareto Front solutions can be acceptable solutions;

acceptability being based on the user-determined desired results. In this work, accu-

racy and feature set size were the objectives determined for optimization. Fig. 4.13

shows an example of the Pareto Front generated for the 12 class textile data set; this

is achieved using CoDeM and a 30% acceptable distributed spacing.

4.1.1 Data. The high spectral resolution 12 class textile data set contains

1600 dimensions and was collected by a hand-held reflectometer with a sampling

interval of 1nm. Due to the parameters, spectral mixing is not considered in this

classification problem. NASAFS and NASAFS-IDF are processed using a bin size of

10nm, which is the average bandwidth of a typical hyperspectral imaging collection

system (e.g. AVIRIS). Therefore, in order to perform a fair comparison, the high-

resolution data (1nm sampling interval data) is resampled (averaged) to 10nm for

ReliefF, GRLVQI, and the Bhattacharyya methods. The classes of the 12 class textile

data set are shown in Table 4.1, with representative samples shown in Fig. 4.1.

Table 4.1: Class types of the 12 class textile data set.
Class Type Constituents Fabric Class Samples

1 Blend 65% Polyester 35% Cotton Woven 18
2 Blend 80% Nylon 20% Spandex Knit 18
3 Blend 80% Polyester 20% Rayon Woven 18
4 Blend 94% Polyester 6% Spandex Woven 18
5 Blend 97% Bamboo 3% Spandex Knit 18
6 Blend 97% Cotton 3% Spandex Woven 18
7 Pure 100% Cotton Knit 18
8 Pure 100% Cotton Woven 18
9 Pure 100% Polyester Knit 18
10 Pure 100% Polyester Woven 18
11 Pure 100% Satin Woven 18
12 Pure 100% Silk Woven 18

The low spectral resolution Lunar Crater Volcanic Field data set (LCVF) is a

VI/NIR/SWIR(0.4−2.5 µm) 224-band, 30 m/pixel Airborne Visible/Infrared Imaging
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Figure 4.1: Representative samples from the 12 class textile data set: 65% Polyester
35% Cotton Woven (red), 80% Nylon 20% Spandex Knit (green), 97% Bamboo 3%
Spandex Knit (tan), 100% Cotton Woven (blue), 100% Polyester Woven (black), 100%
Satin Woven (pink), and 100% Silk Woven (brown).

Spectrometer (AVIRIS) image of the Lunar Crater Volcanic Field in Nevada, USA

collected in 1994 [10,61,62]. The LCVF data set is correlated between the classes and

presents a challenging problem. Fig. 4.2 shows representative spectra samples from

the 23 class LCVF data set used in this paper [61]. On average, the LCVF data set

was collected with a 10nm sampling interval; this qualifies it, for the purposes of this

work, as low-resolution data.

The 7 class Brodatz image data set is a 640x640 pixel GIF data set [87]. Each

image is divided into 12 sample images that are 241x241 images with overlapping

edges. The 7 textures used are shown in Fig. 4.3, along with their corresponding class

number. These samples are preprocessed using a two-dimensional 5th level wavelet
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Figure 4.2: Select representative spectra of the Lunar Crater Volcanic Field (LCVF)
23 class data set, classes A (red), G (green), H (orange), L (magenta), O (purple),
Q (black), and R (blue). The water absorption bands are indicated by the vertical
dotted lines [61, 62].

decomposition [86]. The bins of the 5th level (called leaves) are processed via the

entropy calculation; this results in the vectorization of the 5th level leaves. This

vector processing produces a sample that is 1024 dimensions long; the processing is

then repeated for each image. Appendix A provides further discussion of the wavelet

decomposition method.

4.1.2 Configurations of Test. The feature selection methods tested in this

work are implemented using a three-fold cross-validation. A larger k-fold cross-

validation could not be used, due to the sample sizes of most of the data sets. For all

of the feature selection methods employed in this work, no more than six features are

allowed to be in the final feature set for comparison between methods. The selection

of six features is arbitrary and used for computational considerations; however, trade

studies of different feature set sizes were conducted and the results are reported.
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Figure 4.3: Brodatz samples with their associated class labels [87].

For the 12 class textile data set, four different noise realizations are added

within the CoDeM detector, in order to gain insight into the robustness of the feature

sets chosen. Noise power values are chosen based on the average noise levels of a

typical fielded imaging system; for the purposes of this work, we used the SpectTIR’s

HyperSpectTIR V to compute noise values [40]. The noise is standard unit variance

additive white Gaussian noise that is added to the signals, based on a noise power level.

The noise power levels used are 0.0000, 0.0125, 0.0250 and 0.0300. Fig. 4.4 illustrates

the difference between a clean hyperspectral signal and a hyperspectral signal with

additive white Gaussian noise of a power level of 0.03. CoDeM also adds a fraction

of the added test data noise to the reference data, in an attempt to create a more

accurate detector. This is only performed for lab quality (e.g. closed system) data; if

the data is collected in the field, no noise is added, as it is already representative of

a noisy system and environment.

The average correlation coefficient is computed for each feature set of each

feature selection method evaluated. The average correlation coefficient for each feature

set is obtained by averaging the correlation coefficients for all of the combinations of

each feature within the feature set (Fig. 4.5).
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Figure 4.4: Diagram of two hyperspectral signals. The top figure depicts a clean
hyperspectral signal of 65% Polyester 35% Cotton blend; the bottom figure depicts
the hyperspectral signal for 65% Polyester 35% Cotton blend, with additive white
Gaussian noise of a 0.03 power level.

ReliefF, GRLVQI, and the Bhattacharyya produce global feature sets, whereas

NASAFS and NASAFS-IDF do not. Therefore, the accuracies obtained from the

classifiers for both novel feature selection methods, NASAFS and NASAFS-IDF, with

CoDeM and MED are averages of the class accuracies, where Näıve Bayes and C4.5

are based off of the adjusted contingency table explained in Section IV. Due to

CoDeM’s processing specifications, its results are class averages for all feature selection

methods. ReliefF, GRLVQI, and the Bhattacharyya methods produce global feature

sets; therefore, the global feature sets are used in the same manner as if they were

class feature sets when classified by CoDeM. The accuracies are then calculated the

same as they are for NASAFS.

For NASAFS, the correlation matrix is computed using all available samples;

this allows for the distributed spacing function to use the determined sub-regions in
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Figure 4.5: Pictorial diagram showing the process used to obtain the correlation
coefficient value for each feature set.

the spectral domain. The spectral domain is divided into five sub-regions based on the

correlation matrix for the 12 class textile data set. It is divided into four sub-regions

for the LCVF data set. The texture data set was not tested in NASAFS; therefore,

no sub-regions are calculated.

4.2 NASAFS & NASAFS-IDF Parameters

There are several parameters that affect the performance of NASAFS and

NASAFS-IDF. These parameters include: the initial temperature Tint, and the fi-

nal temperature Tfinal of the simulated annealing algorithm, the decay rate, Tdecay,

of the temperature variable (T ), the bin size Nbin, minimum acceptable number of

times a feature is selected across all histograms (Hhit), minimum acceptable number

of times that a feature is selected within a histogram (Aval), the noise power used for

CoDeM NdB, the acceptable distributed percentage APct, and the feature set size

(|F |).
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NASAFS and NASAFS-IDF are implemented using a bin size of 10nm, which is

the average bandwidth of an imaging collection system (e.g. AVIRIS). Bin size helps

both methods locate specific features within the spectral domain of the signal; these

features exploit the underlying structure in the high-resolution data, and target the

capability of the low-resolution collection system. Different bin sizes can be specified

to determine the best sampling for a target system. For one instance, a bin size of

4 (4nm) may be able to find better discriminating feature sets than a bin size of

40 (40nm); in another instance, a bin size of 4 may be too restrictive to locate the

best feature sets based on the data, and a bin size of 40 may be more appropriate.

Ultimately, the bin size is set to the collection system’s specifications; this allows

NASAFS and NASAFS-IDF to find the best discriminating feature set, based on the

target collection system’s capabilities.

Some parameters have an obvious effect on the effectiveness of the algorithm.

Two of these parameters are temperature decay rate and final temperature. Adjust-

ment of the temperature decay rate can affect the number of poorly discriminating

feature sets that are accepted. Decay rate and feature set acceptance are inversely

proportionate. As the decay rate increases, the number of bad (undesirable) feature

sets accepted decreases; as the decay rate decreases, the number of bad feature sets ac-

cepted increases. Finding an acceptable equilibrium for the temperature decay rate is

necessary to optimize the efficiency and completeness of the algorithm. Final temper-

ature is a parameter that is a factor in the temperature decay rate function. Setting

the final temperature too low decreases efficiency; setting the final temperature too

high could cause the algorithm to terminate prior to convergence. This value was set

based on an empirical study of different starting temperatures with decay rates until

an acceptable amount of chance selects were allowed.

Convergence is the point at which the simulated annealing process completes a

feature set and therefore terminates. At this point, no new feature can be added to the

feature set to achieve a better feature set. At present, determining a good convergence

value is a matter of observing the Monte Carlo runs; the empirical results obtained
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can then be used to gain insight into that value. The convergence value is currently

established at 75 iterations, with no improvement to the previous feature set.

Starting temperature is another parameter that affects efficiency of the algo-

rithm. The higher the starting temperature, the greater the chance of accepting a

bad feature. Therefore, a good starting temperature must be determined, in order

to prevent too many bad features from being randomly added. Through experimen-

tation, it has been established that a starting temperature of ≈ 0.4 is acceptable.

This is due to the fact that the exponential equation is dependent on the average err

value, which is dependent on the heuristic value returned, as seen from the exponen-

tial equation (exp( err
T

)). Fig. 4.6 illustrates the number of chance selects, based on the

initial temperature of the simulated annealing process; starting temperatures of 0.02,

0.4, and 1.0 are used. The temperature is decayed by 10% for each iteration. The dia-

grams in Fig. 4.6 consist of 100 Monte Carlo runs, where each run produced about 210

iterations, based on its final temperature and the convergence criteria. Each Monte

Carlo run has a set of randomly generated values between 0 and 1; this simulates the

values returned by the heuristic. Each diagram in Fig. 4.6 uses the same randomly

generated data for each run and its exponential is compared with the same random

number for determination of value retention. For the starting temperature of T = 0.4

(left figure of Fig. 4.6), on the average, chance selection ceased after 20 iterations,

averaging 3 chance selects per Monte Carlo run, for a total of approximately 300

chance selects. Using a starting temperature of T = 1.0 (middle figure of Fig. 4.6), on

the average, chance selection ceased after 30 iterations, averaging 7 chance selects per

Monte Carlo run, for a total of approximately 700 chance selects. For a starting tem-

perature of T = 0.02 (right figure of Fig. 4.6), on the average, chance selection ceased

after 3 iterations, averaging 0.2 chance selects per Monte Carlo run, for a total of ap-

proximately 24 chance selects. While a starting temperature of T = 1.0 and T = 0.4

averaged approximately the same number of minimum iterations before chance selec-

tions ceased, T = 1.0 allows a significantly higher number of chance selects to occur

than does T = 0.4. Therefore, it is evident that, if the starting temperature is too
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Figure 4.6: Illustration of the chance selects, based on the initial temperature
of the simulated annealing process. Diagrams show results (left) using an initial
temperature of 0.02, (mid) using an initial temperature of 0.4, and (right) using an
initial temperature of 1.0.

high (T = 1.0), the process accepts too many bad chance feature selects, increasing

the possibility that it could miss a significant global maximum/minimum; conversely,

if the starting temperature is too small (T = 0.02), the process does not generate

enough chance selects, severely limiting the total number of chance selects and in-

creasing the probability that the process will settle on a local maximum/minimum.

Therefore, a moderate starting temperature of T = 0.4 is used in this work. The

experiments of this work use the parameters in Table 4.2, unless otherwise stated.

4.3 Results of Experiment

4.3.1 Textile Data Results. NASAFS and NASAFS-IDF successfully select

features that are distributed across the spectral domain and that have good discrim-
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Table 4.2: NASAFS and NASAFS-IDF feature selection parameters.
Parameter Value Description

Tint 0.4 starting temperature
Tdecay 10% temperature decay rate
Tfinal 1x10−10 final temperature

inating characteristics. Fig. 4.7 shows the feature sets selected for four runs of the

NASAFS method, comparing 65% Polyester 35% Cotton Blend (class 1) to 80% Nylon

20% Spandex Blend (class 2). The feature sets’ average correlation coefficient is low,

as show in Table 4.3. The covariance can be used to obtain a measure of discrimina-

tion between the feature sets. Calculating the covariance of the feature set between

class 1 and class 2 for each of these runs results in a low covariance value that ranges

from -0.9401 to -0.9991, which indicates good discrimination between the classes; it

can be determined from this, that one vector is increasing as the other is decreasing.

NASAFS and NASAFS-IDF feature selection methods are stochastic processes, each

incorporating a random walk; therefore, a Monte Carlo simulation is used, in order

to create a histogram of the feature sets. This allows the final feature selection stage

to identify the best feature set from the histograms created, as shown in Fig. 3.8

and 3.11. This stage selects the histogram feature set that best discriminates these

two classes, based on the distributed spacing constraint (Section 3.1.2 and 3.2.2). The

correlation matrix used for NASAFS is shown in Fig. 3.4, where the horizontal black

lines indicate the different sub-regions chosen by NASAFS.

Table 4.3: Average correlation coefficients of four single runs of NASAFS comparing
65% Polyester 35% Cotton blend to 80% Nylon 20% Spandex blend.

Run Mean Corr Coef

1 0.5100
2 0.4809
3 0.5447
4 0.4799

Fig. 4.8 shows the accuracy of the NASAFS feature set for the 12 class textile

data with several noise realizations; feature set sizes range from 4 to 36 and are
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Figure 4.7: Reflectance spectra for 65% Polyester 35% Cotton blend (dashed) and
80% Nylon 20% Spandex blend (solid) signals with discriminating feature sets of four
independent NASAFS runs: run 1 – square, run 2 – diamond, run 3 – asterisk, run 4
– circle.

evaluated in CoDeM. The accuracy increases as the feature set size increases, until a

relative plateau occurs. For the 12 class textile data set, this plateau starts to occur

at a feature set size of six for each noise realization; the selection of six features for

the feature set size was partially driven by this observation. Likewise, NASAFS-IDF

is used to evaluate the 12 class textile data set, at a 30% acceptable distribution

and for each noise realization; several feature set sizes are used, ranging from 2 to

25 features, and are evaluated in CoDeM. The multi-feature set size NASAFS-IDF

evaluation is shown in Fig. 4.9; in this instance, the accuracy appears to plateau at

approximately four features for all noise realizations. The relationship between the

feature set size and the correlation coefficient is shown in Fig. 4.10, again for a 30%

acceptable distribution. Fig. 4.10 shows that as the feature set size increases, the

correlation coefficient also increases. However, the correlation coefficient appears to
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Figure 4.8: Accuracy of NASAFS, using CoDeM, of different sized feature sets
(ranging from 4 to 36 features) over 4 noise realizations (from 0 to 0.03) for the 12
class textile data set.

decrease slightly after a feature set size of 15, but it effectively stabilizes at this point.

The 12 class textile data set is also evaluated by the ReliefF, GRLVQI, and

Bhattacharyya feature selection methods. Each of these feature selection methods

are evaluated using four different classification methods: CoDeM, Minimum Euclidean

Distance (MED), Näıve Bayes, and C4.5. Table 4.4 shows the accuracy of each fea-

ture selection methodology using each of the aforementioned classification methods;

these accuracies are compared to NASAFS and NASAFS-IDF (at 30% acceptable

distributed spacing), using a bin size of 10 and a feature set size of six. For the
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Figure 4.9: Accuracy of NASAFS-IDF, using CoDeM, of different sized feature sets
(ranging from 2 to 25 features) over 4 noise realizations (from 0 to 0.03) for the 12
class textile data set.

12 class textile data set, although all of the feature set selection methods produced

good results, For each classification method, NASAFS-IDF shows an improvement

in accuracy over ReliefF, GRLVQI, and Bhattacharyya feature selection methods.

The standard deviation as well as a significance test (discussed later) indicates that

NASAFS-IDF holds a statistical significance over the other methods for each clas-

sifier; the one exception to this is ReliefF when using CoDeM. Table 4.4 shows the

correlation coefficient for each of the feature sets; NASAFS-IDF is significantly less

correlated than the other methods.

Fig. 4.11 shows the average accuracy of the feature selection methods, as clas-

sified by CoDeM, across a range of noise levels for the 12 class textile data set. As

Fig. 4.11 shows, NASAFS-IDF classification results are better than those of the other

methods. It is noted that as the noise level increases, the accuracies of NASAFS and

NASAFS-IDF do not degrade as rapidly as do the accuracies of the other methods
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Figure 4.10: Diagram comparing average correlation coefficient of the feature set
versus the feature set size for the 12 class textile data set. This is at 30% acceptable
distribution for NASAFS-IDF.

evaluated. This provides for a more robust classification capability in the presence of

noise.

The most notable difference in these methods is the correlation coefficient, which

is an indication of the feature set’s redundancy. The last column of Table 4.4 show

each method’s feature set correlation coefficient. NASAFS and NASAFS-IDF produce

feature sets that have a correlation coefficient of 55% and 58%, respectively. The other

methods compared produce feature sets with correlation coefficients in the 90%−99%

range.

Fig. 4.1 shows different class signals for the 12 class textile data set. It is evident

from Fig. 4.1 that this data set contains correlated samples that create a difficult

situation for classification, as well as impede the ability to produce non-redundant
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Figure 4.11: Results of the classification accuracy for the 12 class textile data
set using CoDeM. Each feature selection method is represented with a different color:
NASAFS (red), NASAFS-IDF (magenta), ReliefF (blue), GRLVQI (green), and Bhat-
tacharyya (black).

feature sets with high classification accuracy. NASAFS and NASAFS-IDF have the

ability to produce features that are distributed throughout the spectral domain; this

is shown in Fig. 4.12. Fig. 4.12 shows the hyperspectral signal for 80% Polyester

20% Rayon Blend, along with the respective feature set elements for the previously

mentioned feature selection methods. It is seen that the features selected by NASAFS

and NASAFS-IDF are spread throughout the reference signal, whereas the features

selected by the other methods tend to be clustered. In most cases, NASAFS and

NASAFS-IDF also locate features of interest that correspond to areas that the other

feature selection methods identified as producing good discriminating features.

A Pareto front for the objectives (accuracy and feature set size) is shown in

Fig. 4.13 for the 12 class textile data set; this is for a 30% acceptable distributed

spacing using CoDeM. In Fig. 4.13, the Pareto front is shown as circles with connected
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Table 4.4: Accuracy and Average Correlation Coefficients for NASAFS, NASAFS-
IDF, ReliefF, GRLVQI, and Bhattacharyya methods for the 12 class textile data
set, where the feature size is six with no noise added to the data. The bin size for
NASAFS-IDF is 10nm and the acceptable distributed spacing set to 30%.

Method Classification/Detection

CoDeM MED Näıve Bayes C4.5 µ,σ r̄
NASAFS 95.27%, ±na 96.80%, ±na 96.70%, ±na 94.15%, ±na 95.73%, ±na 0.5469
NASAFS-IDF 96.64%, ±0.01 98.36%, ±0.02 97.69%, ±0.25 97.67%, ±0.38 97.59%, ±0.45 0.5803
ReliefF 96.25%, ±0.85 84.85%, ±0.07 92.10%, ±0.10 92.56%, ±0.108 91.44%, ±0.87 0.9955
GRLVQI 95.23%, ±0.91 87.63%, ±0.08 92.09%, ±0.11 89.77%, ±0.13 91.18%, ±0.93 0.9025
Bhattacharyya 95.96%, ±0.71 90.91%, ±0.01 89.77%, ±0.12 89.30%, ±0.13 91.49%, ±0.73 0.9933

lines, which indicate the non-dominated solutions for this data set. A contingency

table is constructed for the 12 class textile data set for NASAFS-IDF; this is for

a 30% acceptable distributed spacing with a zero noise level for the Näıve Bayes

classifier. This contingency table is shown in Fig. 4.14, where the kappa statistic is

noted as 0.9747 and the overall accuracy is 97.69%. The commission error, omission
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Figure 4.12: Hyperspectral signal for 80% Polyester 20% Rayon blend. The re-
spective feature sets chosen by each feature selection method are indicated: NASAFS
(box), NASAFS-IDF (X), ReliefF (circle), GRLVQI (asterisk), and Bhattacharyya
(diamond).
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error, producers accuracy, and consumers accuracy are displayed in Fig. 4.14, as well.

NASAFS-IDF produces a feature set based on the one-versus-all concept; therefore,

there are as many feature sets as the number of classes in the data set. The Näıve

Bayes contingency table presents a challenge, since it is uses a global feature set

for classification; therefore, the row of the contingency table corresponding to the

feature set being evaluated for Näıve Bayes is used in the contingency table shown

in Fig. 4.14. From this new table, the errors and accuracies are computed; these are

shown in Fig. 4.14, as well.

NASAFS and NASAFS-IDF do not have any provisions for a global feature set;

however, a global set can be assumed by choosing the class feature set that displays

the greatest overall accuracy. To provide an example, in the case of the textile data set
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Figure 4.13: Pareto Front for the 12 class textile data set using CoDeM for the
30% acceptable distributed spacing criteria. The Pareto Front is for accuracy versus
feature set size and is indicated by circles connected by lines.
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using Näıve Bayes, each feature set is processed and its ability to accurately classify

each sample to the appropriate class is recorded. In this particular instance, the

feature set associated with class 7 performs best or is most accurate across all the

classes. The feature set of this class (class 7) can then be assumed to perform as a

global feature set because its overall accuracy is greater than the overall accuracy for

any other class’ feature set. The contingency table for class 7’s feature set is shown

in Fig. 4.15. The overall accuracy is 98.14% with a standard deviation of 0.056 and

a kappa statistic of 0.9797. This could be a possible solution to a global feature set.

However, determining a global feature set was not an agenda for this work and will

require further investigation; therefore, the overall reported results will remain as

indicated in Fig. 4.14.

4.3.2 LCVF Data Results. The correlation matrix used for NASAFS is

shown in Fig. 4.16; horizontal black lines indicate the different sub-regions chosen

by NASAFS. Only four regions were selected by NASAFS for the LCVF data set;

these are based on the correlation matrix of the data. Therefore, as the data sets

change, the number and sizes of sub-regions that NASAFS uses to determine the

distributed spacing will change. The LCVF data set was collected in the field and

contains noise from the field collection process; therefore, noise was not added to

1 2 3 4 5 6 7 8 9 10 11 12

1 18 0 0 0 0 0 0 0 0 0 0 0 18 100.00% 0.00%

2 0 18 0 0 0 0 0 0 0 0 0 0 18 100.00% 0.00%

3 0 0 18 0 0 0 0 0 0 0 0 0 18 100.00% 0.00%

4 0 0 0 18 0 0 0 0 0 0 0 0 18 100.00% 0.00%

5 0 0 0 0 18 0 0 0 0 0 0 0 18 100.00% 0.00%

6 0 0 0 0 0 14 0 4 0 0 0 0 18 77.78% 22.22%

7 0 0 0 0 0 0 18 0 0 0 0 0 18 100.00% 0.00%

8 0 0 0 0 0 1 0 17 0 0 0 0 18 94.44% 5.56%

9 0 0 0 0 0 0 0 0 18 0 0 0 18 100.00% 0.00%

10 0 0 0 0 0 0 0 0 0 18 0 0 18 100.00% 0.00%

11 0 0 0 0 0 0 0 0 0 0 18 0 18 100.00% 0.00%

12 0 0 0 0 0 0 0 0 0 0 0 18 18 100.00% 0.00%

Total 18 18 18 18 18 15 18 21 18 18 18 18

C.A. 100.00% 100.00% 100.00% 100.00% 100.00% 93.33% 100.00% 80.95% 100.00% 100.00% 100.00% 100.00%

C.E. 0.00% 0.00% 0.00% 0.00% 0.00% 6.67% 0.00% 19.05% 0.00% 0.00% 0.00% 0.00%

97.69%

0.9747

Actual 

Class

Classified as Class: Total # 

Samples
P.A. O.E.

Kappa Statistic

Total Accuracy

Figure 4.14: Contingency table for 12 class textile data set as reported by Näıve
Bayes, using the feature sets of NASAFS-IDF with a 30% acceptable distributed
spacing. C.A. is the consumers accuracy, C.E. is the consumer error, P.A. is the
producers accuracy and O.E. is the omission error.
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Figure 4.15: Contingency table for 12 class textile data set as reported by Näıve
Bayes, using the feature set of class 7 of NASAFS-IDF with a 30% acceptable dis-
tributed spacing.

this data set for its evaluation by NASAFS, NASAFS-IDF or any other method. The

LCVF 23 class data set is also evaluated by the ReliefF, GRLVQI, and Bhattacharyya

feature selection methods. Each of these feature selection methods are evaluated by

four different classification methods: CoDeM, Minimum Euclidean Distance (MED),

Näıve Bayes, and C4.5. Table 4.5 compares ReliefF, GRLVQI, and Bhattacharyya

feature selection methods to NASAFS and NASAFS-IDF for the LCVF data set

with 45% acceptable distributed spacing for a bin size of 10 and a feature set size of

six. Table 4.5 includes the standard deviation of each result to provide more insight

into the statistical significance of the results. NASAFS-IDF shows an improvement

in accuracy over ReliefF, GRLVQI, and Bhattacharyya feature selection methods

for the MED, Näıve Bayes, and C4.5 classifiers. The standard deviation indicates

that NASAFS-IDF has statistical significance over the other methods for those three

classifiers. The correlation coefficients for the feature sets in Table 4.5 show that

NASAFS-IDF is significantly less correlated than the other methods.

NASAFS and NASAFS-IDF show accuracies comparable to or better than, in

terms of accuracy, the other methods when using feature sets with low correlation
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Figure 4.16: Correlation matrix of the 23 class LCVF data set. Sub-regions are de-
termined by NASAFS and are marked with solid vertical black lines. The correlation
coefficient of each sub-region is shown in the boxes.

coefficients (Fig. 4.5). NASAFS and NASAFS-IDF each produce a feature set that has

a correlation coefficient of 40% and 48%, respectively. The other methods evaluated

produce feature sets with correlation coefficients in the 98%−99% range; the exception

is GRLVQI, which has a correlation coefficient of 71%.

The LCVF data set is a highly correlated data set (Fig. 4.2), which produces

a difficult situation when attempting to select meaningful, non-redundant features

for a feature set. From Fig. 4.5, it is evident that NASAFS and NASAFS-IDF can

select highly discriminate features that have low correlation. Figure 4.17 shows a

representative sample of the LCVF data set, with the feature locations shown as

chosen by NASAFS, NASAFS-IDF, ReliefF, GRLVQI, and Bhattacharyya feature

selection methods. It is evident, from Fig. 4.17, that while ReleifF and Bhattacharyya

pick features that are clustered together (i.e redundant), GRLVQI attempts to pick
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Table 4.5: Accuracy and Average Correlation Coefficients for NASAFS, NASAFS-
IDF, ReliefF, GRLVQI, and Bhattacharyya methods for the LCVF data set, where
the feature size is six with no noise added to the data. The bin size for NASAFS-IDF
was 10nm and the acceptable distributed spacing is set to 45%.

Method Classification/Detection

CoDeM MED Näıve Bayes C4.5 µ,σ r̄
NASAFS 90.43%, ±na 83.43%, ±na 86.43%, ±na 83.08%, ±na 85.84%, ±na 0.4027
NASAFS-IDF 89.02%, ±0.68 85.84%, ±0.07 89.57%, ±0.41 85.81%, ±0.53 87.56%, ±0.96 0.4771
ReliefF 90.76%, ±0.33 79.76%, ±0.11 79.78%, ±0.12 80.86%, ±0.12 82.79%, ±0.39 0.9961
GRLVQI 88.94%, ±0.15 71.74%, ±0.08 69.14%, ±0.14 62.37%, ±0.17 73.05%, ±0.28 0.7058
Bhattacharyya 90.89%, ±0.47 82.96%, ±0.11 82.37%, ±0.11 83.55%, ±0.12 84.94%, ±0.51 0.9836
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Figure 4.17: Representative sample of the LCVF 23 class data set, with the loca-
tions of the features of the feature sets selected by NASAFS (diamond), NASAFS-IDF
(star), ReliefF (square), GRLVQI (circle), and Bhattacharyya (dot).

features that are less correlated; however, NASAFS and NASAFS-IDF select features

that are more widely distributed throughout the sample domain.

A Pareto Front for the objectives (accuracy and feature set size) is shown in

Fig. 4.18 for the LCVF 23 class data set; this is for a 45% acceptable distributed

spacing using CoDeM. In Fig. 4.18, the Pareto front is shown as circles with connected

lines; these indicate the non-dominated solutions for this data set.

A contingency table is constructed of the NASAFS-IDF results for the LCVF

23 class data set; these are calculated at a 45% acceptable distributed spacing and
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a zero noise level for the Näıve Bayes classifier. This contingency table is shown in

Fig. 4.19, where the kappa statistic is noted as 0.8868 and the overall accuracy is

89.57%. The commission error, omission error, producers accuracy, and consumers

accuracy are displayed in Fig. 4.19. NASAFS-IDF produces a feature set based on the

one-versus-all concept; therefore, there are as many feature sets as there are number

of classes in a data set. As with the other data sets, producing a contingency table

for Näıve Bayes presents a challenge; therefore, as before, the row of the contingecy

table corresponding to the feature set being evaluated for Näıve Bayes is used in

the contingency table, as shown in Fig. 4.19. From this new table, the errors and

accuracies are computed; these are shown in Fig. 4.19.

As previously explained, a global set can be determined by choosing the class

feature set that displays the greatest overall accuracy. As described earlier, each

feature set is processed by Näıve Bayes and its ability to accurately label each sample

to the appropriate class is recorded. In this case, the feature set associated with class
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Figure 4.18: Pareto Front for the LCVF 23 class data set using CoDeM for the 45%
acceptable distributed spacing criteria. The Pareto Front is accuracy versus feature
set size and is indicated by circles connected by lines.
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1 performs the best across all classes. Therefore, the feature set of this class can

be assumed to perform as a global feature set because its overall accuracy is greater

than the overall accuracy for any other class’ feature set. The contingency table for

class 1’s feature set is shown in Fig. 4.20. The overall accuracy is 93.66% with a

standard deviation of 0.07 and a kappa statistic of 0.9312. As with the textile data

results, these statistics display greater accuracy than the average statistics previously

reported. However, the overall reported results will remain as indicated in Fig. 4.19;

this is due to the fact that a global feature set was not an original goal of this work,

and further study will be necessary before conclusions can be drawn.

4.3.3 Texture Data Results. The results of the 5 level wavelet decomposition

of the 7 class texture data set are processed with NASAFS-IDF, ReliefF, GRLVQI, and

Bhattacharyya only; therefore, there are no performance comparisons of NASAFS-

IDF to NASAFS for this data set. NASAFS is not evaluated with this data set due

to the structure of the correlation matrix. NASAFS must be able to determine sub-

regions (regions of strong correlation) of the data. This data set does not present an

adequate region that could be divided for the use of sub-regions. This can be visually

identified in Fig. 4.21 which shows the correlation matrix of the texture data set. The

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 70 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 71 98.59% 1.41%

2 0 18 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 22 81.82% 0.00%

3 0 0 37 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 4 0 0 50 74.00% 18.00%

4 0 0 0 157 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 160 98.13% 1.88%

5 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 100.00% 0.00%

6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 100.00% 0.00%

7 0 0 0 0 0 1 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 7 71.43% 14.29%

8 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 50 98.00% 0.00%

9 0 0 5 0 0 0 0 2 21 0 0 0 2 0 0 1 0 0 0 0 1 0 4 36 58.33% 19.44%

10 0 0 0 0 0 0 0 0 0 11 0 0 1 0 0 0 0 0 0 0 0 0 0 12 91.67% 0.00%

11 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 1 0 0 0 0 0 1 0 37 94.59% 0.00%

12 0 0 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 5 78 93.59% 0.00%

13 0 0 0 0 0 0 0 2 2 0 0 0 10 0 0 0 0 0 0 0 0 0 0 14 71.43% 28.57%

14 0 0 0 0 0 0 0 2 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 15 86.67% 13.33%

15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 52 1 0 0 0 0 0 0 0 54 96.30% 3.70%

16 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 41 0 0 0 0 0 0 0 45 91.11% 8.89%

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 15 100.00% 0.00%

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 5 0 0 0 0 14 64.29% 35.71%

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 15 100.00% 0.00%

20 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 0 0 18 77.78% 22.22%

21 0 0 4 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 29 0 0 36 80.56% 19.44%

22 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 7 0 12 58.33% 41.67%

23 0 0 3 0 0 0 0 0 2 0 0 7 3 0 0 0 0 0 0 0 2 0 16 33 48.48% 51.52%

Total 70 18 49 157 119 23 5 55 37 11 41 81 20 13 55 47 15 9 21 14 37 8 25

C.A. 100.00% 100.00% 75.51% 100.00% 96.64% 91.30% 100.00% 89.09% 56.76% 100.00% 85.37% 90.12% 50.00% 100.00% 94.55% 87.23% 100.00% 100.00% 71.43% 100.00% 78.38% 87.50% 64.00%

C.E. 0.00% 0.00% 24.49% 0.00% 3.36% 8.70% 0.00% 10.91% 43.24% 0.00% 14.63% 9.88% 50.00% 0.00% 5.45% 12.77% 0.00% 0.00% 28.57% 0.00% 21.62% 12.50% 36.00%

Total Accuracy

Kappa Statistic

89.57%

0.8868

Actual 

Class

Total # 

Samples
P.A. O.E.

Classified as Class:

Figure 4.19: Contingency table for LCVF 23 class data set as reported by Näıve
Bayes, using the feature sets of NASAFS-IDF with a 45% acceptable distributed
spacing. C.A. is the consumers accuracy, C.E. is the consumer error, P.A. is the
producers accuracy and O.E. is the omission error.
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texture data set is processed, over four noise realizations and multiple feature set sizes,

to show the performance based on a feature set size for 35% acceptable distributed

spacing. Figure 4.22 shows that for feature sizes up to 25, it peaks at 15; however,

the difference in accuracy between a feature size of six and a feature size of 15 is small

enough to justify using a feature size of six to process the remainder of this data set.

The correlation between the feature set size and the correlation coefficient, at a 35%

acceptable distribution, is shown in Fig. 4.23. This figure shows that, in general, as

the feature set size increases, the correlation coefficient also increases. However, it is

noted that for a feature set size of two the correlation coefficient is higher than the

correlation coefficient for a feature set size of four. After feature set size reaches 15,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 70 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 15 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 4

3 0 0 46 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 1

4 0 0 0 159 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 11 0 0 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 1 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 3

13 0 0 1 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 2 0 0 0 0 7 6 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 51 2 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 40 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 3 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 11 1 0 0 0

20 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0

21 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 34 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 10 0

23 0 4 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 24

Correctly Classified Instances

Incorrectly Classified Instances

Kappa statistic

871

59

0.931

93.66%

6.34%

Actual 

Class

Classified as Class

Figure 4.20: Contingency table for 23 class LCVF data set as reported by Näıve
Bayes, using the feature set of class 1 of NASAFS-IDF with a 45% acceptable dis-
tributed spacing.
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Figure 4.21: Correlation matrix of the 7 class texture data set.
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Figure 4.22: Accuracy of NASAFS-IDF, using CoDeM, of different sized feature
sets (ranging from 2 to 25 features) over 4 noise realizations (from 0 to 0.03) for the
7 class texture data set for a 35% acceptable distribution.
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the correlation coefficient appears to slightly decrease; however, it is predominantly

stabilized at this point for the feature set sizes evaluated. This unexpected behavior

of the correlation coefficient correspondence to the feature set size is due to the fact

that this data set is not strictly correlated. Figure 4.24 is a representative sample

of the texture data set. The data set is preprocessed via the wavelet decomposition,

resulting in the values being highly uncorrelated between branches. This fact could

lead to the results shown in Fig. 4.23.

Table 4.6 compares ReliefF, GRLVQI, and Bhattacharyya feature selection meth-

ods to NASAFS-IDF for the texture data set, at an acceptable distributed spacing of

35%, a bin size of 10, and a feature set size of six. Table 4.6 includes the standard

deviations of each result in order to provide more information regarding the statistical

significance of the results. NASAFS-IDF shows an improvement in accuracy over Reli-

efF, and Bhattacharyya feature selection methods for CoDeM, Näıve Bayes, and C4.5

classification methods. However, the standard deviation indicates that NASAFS-IDF
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Figure 4.23: Diagram comparing the average correlation coefficient of the feature
set versus the feature set size for the 7 class texture data set at 35% acceptable
distribution for NASAFS-IDF.
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only displays a statistical significance over the other methods for Näıve Bayes and

C4.5 classifiers. The last column of Table 4.6 shows the correlation coefficient for the

feature sets and verifies that NASAFS-IDF is less correlated than the other methods.

The correlation coefficient is the most important difference between these methods,

Table 4.6: Accuracy and Average Correlation Coefficients for NASAFS-IDF, Re-
liefF, GRLVQI, and Bhattacharyya methods for the 7 class texture data set, where
the feature size is six with no noise added to the data. The bin size for NASAFS-IDF
was 10nm and the acceptable distributed spacing is set to 35%.

Method Classification/Detection

CoDeM MED Näıve Bayes C4.5 µ,σ r̄
NASAFS-IDF 87.72%, ±2.82 80.95%, ±0.10 72.29%, ±0.65 63.86%, ±0.82 76.21%, ±3.01 0.6598
ReliefF 87.50%, ±1.97 86.81%, ±0.09 69.88%, ±0.25 61.45%, ±0.29 76.41%, ±2.01 0.7507
GRLVQI 87.24%, ±3.71 91.67%, ±0.04 79.52%, ±0.21 63.86%, ±0.31 80.57%, ±3.73 0.6724
Bhattacharyya 86.11%, ±1.84 83.33%, ±0.09 71.08%, ±0.25 54.22%, ±0.34 73.69%, ±1.89 0.8381

because it is an indication of feature set redundancy. However, due to the nature of

this data set, the redundancy of features might not matter. Fig. 4.25 illustrates the

spread of the features for each feature selection method’s feature set as plotted against

a class 1 and 2 texture sample. It is noted from Fig. 4.25 and Table 4.6 that feature

spreading has little to do with accuracy for this data set and noise level. Fig. 4.26 is
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Figure 4.24: Selected representative sample for the 7 class texture data set.
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an exert from Fig. 4.25 to show more detail of the two classes. The Bhattacharyya

method is more clustered than the others and has comparable accuracies. It can

also be noted that due to the nature of this data set that all of the feature selection

methods chose features that are spread across the domain. NASAFS-IDF produces

a feature set that has a correlation coefficient of 0.66, whereas the correlation coeffi-

cients obtained by the other methods are higher, but not extremely so. Again, this is

attributed to the fact that the data in this data set is not strictly correlated. A Pareto

front for the objectives (accuracy and feature set size) of the 7 class texture data set is

shown in Fig. 4.27; these are for a 35% acceptable distributed spacing using CoDeM.

In Fig. 4.27, the Pareto front is shown as circles with connected lines; this indicates

the non-dominated solutions for this data set. A contingency table is constructed for

the 7 class texture data set NASAFS-IDF results; this table displays a 35% acceptable

distributed spacing with a zero noise level for the Näıve Bayes classifier. It is shown in

Fig. 4.28, where the kappa statistic is noted as 0.68 and the overall accuracy is 72.29%.
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Figure 4.25: Class 1 and 2 sample of the 7 class texture data set. The features of
each feature selection method are indicated as follows: NASAFS-IDF star, ReliefF
diamond, GRLVQI circle, and Bhattacharyya ‘x’.
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Figure 4.26: Class 1 and 2 sample of the 7 class texture data set. The features of
each feature selection method are indicated as follows: NASAFS-IDF star, ReliefF
diamond, and GRLVQI circle.

The commission error, omission error, producers accuracy, and consumers accuracy

are displayed in Fig. 4.28, as well. As previously stated, NASAFS-IDF produces a

feature set based on the one-versus-all concept; as such, the number of feature sets

is equal to the number of classes in a data set. A contingency table is produced for

Näıve Bayes. The row of the contingency table corresponding to the feature set being

evaluated for Näıve Bayes is used in the contingency table shown in Fig. 4.28. From

this new table, the errors and accuracies are computed; these are shown in Fig. 4.28,

as well. Each feature set is processed by Näıve Bayes in an attempt to determine a

global feature set for the data. In this data set, each sample is labeled and the results

are recorded. The feature set associated with class 2 outperforms the feature sets for

all other classes. The class 2 feature set contingency table is shown in Fig. 4.29. The

overall accuracy is 86.75%, with a standard deviation of 0.18 and a kappa statistic of

0.85. As with other data sets, the statistics obtained using class 2 as a global feature

set show more desirable results than the previously reported statistics. However, as
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Figure 4.27: Pareto Front for the 7 class texture data set using CoDeM for the 35%
acceptable distributed spacing criteria. The Pareto Front is accuracy versus feature
set size and is indicated as circles connected by lines.

1 2 3 4 5 6 7

1 9 0 0 0 0 0 2 11 81.82% 18.18%

2 0 10 1 0 0 0 1 12 83.33% 16.67%

3 1 4 1 1 0 0 5 12 8.33% 91.67%

4 0 0 2 10 0 0 0 12 83.33% 16.67%

5 0 0 0 0 12 0 0 12 100.00% 0.00%

6 0 0 0 0 0 12 0 12 100.00% 0.00%

7 2 3 0 1 0 0 6 12 50.00% 50.00%

Total 12 17 4 12 12 12 14

C.A. 75.00% 58.82% 25.00% 83.33% 100.00% 100.00% 42.86%

C.E. 25.00% 41.18% 75.00% 16.67% 0.00% 0.00% 57.14%

72.29%

0.6767

Actual 

Class

Total # 

Samples
P.A. O.E.

Total Accuracy

Kappa Statistic

Classified as Class:

Figure 4.28: Contingency table for 7 class texture data set as reported by Näıve
Bayes, using the feature sets of NASAFS-IDF with a 35% acceptable distributed
spacing. C.A. is the consumers accuracy, C.E. is the consumer error, P.A. is the
producers accuracy and O.E. is the omission error.
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has been stated, determining a global feature set was not an agenda of this work.

Further, more thorough testing is required; therefore, the results reported in Fig. 4.28

will remain as indicated.

4.4 Significance of Feature Selection Methods

For each data set, NASAFS and NASAFS-IDF (where appropriate) produced

better results that have lower correlation among the features of the feature set. The

computation cost required by NASAFS-IDF is less than is required for NASAFS, and

NASAFS-IDF appears to outperform NASAFS in some instances. The statistical

significance of NASAFS-IDF, as compared to the other feature selection methods

Tables 4.4, 4.5, 4.6, is due in part to the standard deviation. To further test the

significance of NASAFS-IDF against the other feature selection methods tested for

all three data sets, the Wilcoxon signed-rank test is applied. NASAFS is not used

with the 7 class texture data set and therefore the Wilcoson signed-rank test is only

computed for all five feature selection techniques for only the hyperspectral data set

results.

The Wilcoxon signed-rank test is a non-parametric test that does not assume

normality of the data. It produces a test statistic that is then compared to a chart

72 86.75%

11 13.25%

0.8454

1 2 3 4 5 6 7

1 11 0 0 0 0 0 0

2 0 10 1 0 0 0 1

3 0 2 9 0 0 0 1

4 0 0 0 12 0 0 0

5 0 1 0 0 11 0 0

6 0 0 0 0 0 12 0

7 2 2 0 1 0 0 7

Kappa statistic

Correctly Classified Instances

Incorrectly Classified Instances

Classified AsActual 

Class

Figure 4.29: Contingency table for 7 class texture data set as reported by Näıve
Bayes, using the feature set of class 2 of NASAFS-IDF with a 35% acceptable dis-
tributed spacing.
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of critical values, in order to determine the significance of a random variable or the

significance of one random variable versus another [92], [82], [53], [81]. In order to

apply this test to the data sets that have been used for our evaluations, we must first

define the data sets being tested.

We will compare the feature selection methods to each other by assembling the

accuracy results into a vector. Each feature selection method (i.e. NASAFS-IDF,

ReliefF, GRLVQI, and Bhattacharyya) will have a vector of values associated with

each accuracy, using each classifier (i.e. MED, CoDeM, Näıve Bayes, and C4.5) for

each set of data (i.e. 12 class textile, 23 class LCVF, 7 class texture), resulting in each

vector having 12 values. This data set of the feature selection methods’ accuracies

must be checked for normality. If the data is determined to be normally distributed,

another type of test (e.g. paired t-test) must be used. For the purposes of our work,

the Shapiro Wilks test will be used to test for normality.

The Shapiro Wilks test determines if a sample came from a normal distribution;

it is a good testing choice because it works well with small sample sizes. The test

statistic for this test is compared to a table in order to determine rejection or non-

rejection of the null hypothesis of normality [27, 80]. If the test statistic falls below

the 50% value of Table 6 in [80], then the null hypothesis is rejected and the sample

is considered to be from a non-normal distribution. As previously stated, we have 12

values per vector; therefore, according to ‘the analysis of variance test for normality’

table (Table 6) of [80], since n = 12, the 50% value is 0.943. The test statistic

for NASAFS-IDF is 0.864, ReleifF is 0.920, GRLVQI is 0.868, and Bhattacharyya is

0.810. All fall below the 50% value of 0.943 and are therefore considered to be from

a non-normal distribution, and we can proceed with the Wilcoxon signed-rank test.

The Wilcoxon signed-rank test is typically used on data that cannot meet the

requirements of a t-test; namely, that the scale of the values for each variable be of

an equal interval scale, and that the variables belong to a normal distribution [53].

Our data does not meet either of these t-test criteria. As determined by the Shapiro
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Wilks test, the data is not from a normal distribution. Additionally, even though

the values are given as a percentage from 0 to 100, they are determined by different

methods, meaning the scale of the values in each variable can be argued to not be of

an equal interval scale. Therefore, the Wilcoxon signed-rank test will be a good fit

for our data.

The basic operation of the Wilcoxon signed-rank test is to first define a null

hypothesis. The null hypothesis is typically set in order to determine a specific value

of the two vectors; the alternative hypotheses is that which is not the null (i.e. H0 =

4 and Ha otherwise). The definitions set by the null and alternative hypothesis

determine whether the critical value table to be used should be from a one-tailed or

two-tailed test. This is dependent on directionality. If the null hypothesis is set to

be a value or less and the alternative is to be larger than that value, then the critical

values to be used come from a one-tailed test [81]. If the null hypothesis is set to be

a value, and the alternative hypothesis is set to be any value that is not that value,

then the critical values to be used come from a two-tailed test. For our situation, the

null hypothesis is there is no significant difference in method A versus method B, and

the alternative is method A is significantly better than method B ; therefore, we use a

one-tailed test. Table 4.7 shows the results of the Wilcoxon signed-rank test for the

case using the results from all three data sets, where the row corresponds to method

A and the column corresponds to method B. For the result located in row 1 column

3, the chart reads in the following manner: NASAFS-IDF method outperforms the

ReliefF method, with a 0.025 significance. It can be seen that for the case where

NASAFS-IDF is compared against the other methods, NASAFS-IDF is consistently

better, by a significance of 0.025 or greater. When the other methods are tested

against NASAFS-IDF or each other, the null hypothesis is not rejected; therefore, it

is determined that the other methods tested against NASAFS-IDF are not better to

any significance level. Table 4.8 shows the results of the Wilcoxon signed-rank test

for the case using the results from the hyperspectral data sets only. It can be seen

that NASAFS is able to reject the null hypothsis when compared against ReliefF
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and GRLVQI to a significance level of 0.025 and 0.01 respectively. NASAFS-IDF

rejected the null hypothsis when tested against all other feature selection methods

even NASAFS. Table 4.8 shows a level of significance over NASAFS to a significance

level of 0.025 and 0.01 for the other methods tested.

Table 4.7: Wilcoxon signed-rank test results for the feature selection methods tested
in this work. The row is considered as method A and the column is considered as
method B. For the Wilcoxon signed-rank test, and as our null hypothesis states for
this test, we are determining if method A is better than method B with a significance
better than 0.05.

NASAFS-IDF ReliefF GRLVQI Bhattacharyya

NASAFS-IDF ———— 0.025 0.025 0.01
ReliefF Not Rejected ———— Not Rejected Not Rejected

GRLVQI Not Rejected Not Rejected ———— Not Rejected
Bhattacharyya Not Rejected Not Rejected Not Rejected ————

Table 4.8: Wilcoxon signed-rank test results for all five feature selection methods
tested in this work. The row is considered as method A and the column is considered
as method B. For the Wilcoxon signed-rank test, and as our null hypothesis states for
this test, we are determining if method A is better than method B with a significance
better than 0.05.

NASAFS NASAFS-IDF ReliefF GRLVQI Bhattacharyya

NASAFS ———— Not Rejected 0.025 0.01 Not Rejected
NASAFS-IDF 0.025 ———— 0.01 0.01 0.01

ReliefF Not Rejected Not Rejected ———— 0.025 Not Rejected
GRLVQI Not Rejected Not Rejected Not Rejected ———— Not Rejected

Bhattacharyya Not Rejected Not Rejected Not Rejected 0.05 ————

4.5 Summary

Three different data sets are evaluated by our novel feature selection methods:

12 class textile data set, Lunar Crater Volcanic Field data set (LCVF), and 7 class

Brodatz texture data set. The results of these evaluations are compared to three

feature selection methods: ReliefF, GRLVQI, and Bhattacharyya. For each data set,

each of the feature selection methods is then classified by four classification methods:

CoDeM, MED, Näıve Bayes, and C4.5. The results for each data set are shown in

Sections 4.3.1, 4.3.2, and 4.3.3. On the average, our novel feature selection methods

(NASAFS and NASAFS-IDF) outperform all the other feature selection methods
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evaluated for all the data sets, and show statistical significance according to the

standard deviation of each test. This performance is consistent with all the classifiers

used; however, for the hyperspectral data sets, Näıve Bayes performs best for our

novel feature selection methods. Näıve Bayes uses the basic assumption of relative

independence; the low correlated feature sets produced by NASAFS and NASAFS-

IDF statistically resemble relative independence. This could explain why Näıve Bayes

produces better results than the other classifiers for our feature selection method.

The correlation coefficient for each feature selection method is seen in Tables 4.4, 4.5,

and 4.6; these values show that the correlation coefficients produced by NASAFS and

NASAFS-IDF are significantly lower than the correlation coefficients produced by the

other feature selection methods evaluated.

The Pareto front of each NASAFS-IDF data set is shown in Fig. 4.13, 4.18,

and 4.27, where the effect of feature set size versus accuracy can be determined. As

expected, larger feature set size achieves better accuracy; however, this is only to a

point, after which the proliferation of features overwhelms the classifiers and begins

to decrease classification accuracy. The exception to this finding, which is the LCVF

data set, did not show a decrease in accuracy as chosen feature set size increases;

however, the rate that the accuracy increases decreased. It is also determined that

as the feature set size increases, the correlation coefficient also increases (Fig. 4.10,

and 4.23); this is as would be expected.

A contingency table is created from Näıve Bayes results for NASAFS-IDF

(Fig. 4.14, 4.19, and 4.28), and for each of the data sets shown, the kappa statistic

is extremely high; this provides additional evidence that NASAFS-IDF has statisti-

cal relevance and exceptional accuracy as a feature selection methodology. It should

also be noted that the texture data set is not a hyperspectral data set, and it is not

continuously correlated as in the manner of hyperspectral data sets. Our intent is

for our novel feature selection systems to be used on hyperspectral data sets; how-

ever, this data set is evaluated to determine the flexibility of our feature selection

methodology when used with other types of data sets. Upon evaluation, it is found
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that NASAFS-IDF produces results that fall well within the range of acceptability.

Finally, the results of the Wilcoxon signed-rank test are shown in Table 4.7 and 4.8.

These results show that NASAFS-IDF is superior to other feature selection methods,

when compared over all data sets for all classifiers, to a significance of 0.025 to 0.01.
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V. Conclusion

The ability to locate an object in any the environment has a multitude of applications.

Specifically, locating a dismount in the scene is useful for Search and Rescue, Mili-

tary operations, and Security purposes. This objective can be aided with an accurate

textile detection method. The ability to accurately detect textiles depends on distin-

guishing between different material types. Hyperspectral data provides a multitude

of distinguishing characteristics to aid in detection.

However, to use hyperspectral data in a computationally efficient way, one must

pair-down the information space to only a few key bits of highly discriminating fea-

tures. Feature selection is a method that accomplishes this capability. However,

not all feature selection methods select highly discriminatory features that are non-

redundant. Non-redundancy provides robustness of classification, especially in the

presence of noise.

The goal posed at the beginning of this work is to develop a feature selection

methodology that randomly and non-greedily chooses features to achieve a minimally-

sized, non-redundant feature set that produces accurate classification. NASAFS and

NASAFS-IDF are designed to be used on continuous highly dimensional data sets;

however, various methodologies, taxonomies, and processes that encompass common

feature selection methodologies are researched to explore and demonstrate capability

with other types of data sets.

NASAFS and NASAFS-IDF use a stochastic search algorithm in conjunction

with a heuristic that combines measures of distance and dependence to select features.

They also incorporate a distributed spacing equation to produce low-correlated fea-

ture sets. NASAFS and NASAFS-IDF are able to produce results that are highly

accurate. These accuracies out perform those of the other methods tested. NASAFS

and NASAFS-IDF also produce feature sets with a correlation coefficient that are

about half that of the other methods tested.
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5.1 Summary of Results

This dissertation presented the novel NASAFS and NASAFS-IDF feature se-

lection methods that produce small feature sets which achieve non-redundancy and

excellent classification accuracy. NASAFS and NASAFS-IDF, differ in their method

of determining highly discriminate features that have low correlation. However, both

achieve excellent results.

Three common feature selection methods are compared to NASAFS and NASAFS-

IDF; ReliefF, GRLVQI, and Bhattacharyya (Section 2.2). Three different data sets are

used to validate the capability of NASAFS and NASAFS-IDF, two hyperspectral data

sets, one lab quality and the other field collected, and a non-correlated (Section 4.1.1).

NASAFS and NASAFS-IDF consistently choose low correlated feature sets for all

three of the data sets tested (Tables 4.4, 4.5, 4.6). NASAFS and NASAFS-IDF typ-

ically outperform ReliefF, GRLVQI, and Bhattacharyya feature selection methods

for CoDeM, Näıve Bayes, C4.5, and MED classifiers used (Tables 4.4, 4.5, 4.6). In

most cases, the Näıve Bayes classifier is found to produce extremely accurate results.

This can be explained due to the independent assumption of Näıve Bayes and the

low correlated feature sets produced by NASAFS and NASAFS-IDF. For the cases

where NASAFS-IDF outperforms the other feature selection methods, the standard

deviations indicate a level of significance that can be assigned to these results. To

further establish significance, the Wilcoxon signed-rank test is performed. Its results

show NASAFS-IDF is a better feature selection method overall, accounting for all

classifiers and all data sets, with significance levels of 0.01 to 0.025 (Table 4.7). As

previously stated, NASAFS or NASAFS-IDF do not determine a global feature set.

However, assumption of a global feature set is possible by using the class feature

set that produces the best overall accuracy when used to classify all samples into

an appropriate class. When determined in this manner, higher accuracy results are

obtained than when using the average of all the class accuracies (Section 4.3).
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Overall, NASAFS and NASAFS-IDF accomplish the stated goal of creating a

feature selection method to operate in a highly dimensional continuous data domain

to provide low-correlated feature sets that produce highly accurate results. NASAFS

and NASAFS-IDF also outperform the other feature selection methods evaluated.

In some instances, this level of accuracy is extremely high, this is dependent on the

data set and classifiers used. Even though NASAFS-IDF is created to work best

for hyperspectral data sets, it is shown that it can also produce good classification

accuracies when tested on another types of data; these accuracies are found to be as

good as, if not better than, the accuracies produced by the common feature selection

methods evaluated.

5.2 Recommendations for Future Work

Future work with NASAFS or NASAFS-IDF would require a field data collect

and the use of a hyperspectral imager. Collecting this data with known textiles in the

FOV will serve a multitude of purposes. It will enable the identification of possible

confusers, as well as determine the capability of this system in the field. Using this

data, and a predetermined NASAFS or NASAFS-IDF feature set for a specific class,

it will be possible to determine that class’ degree of detection accuracy, as well as its

accuracy against the other textile classes, both known and unknown, in the scene.

This would allow for the incorporation of confuser suppression, which will create

a more robust system. This will also demonstrate the methods’ capability in the

presence of pixel mixing (i.e. pixels of less than pure class data).

The heuristic could be adapted to create a true multi-objective optimization

of the distributed spacing objective and the discrimination objective. It is possible

a multi-objective optimization of these two parameters could produce a feature set

that is more robust than the current feature sets created by NASAFS and NASAFS-

IDF. A third parameter, variable bin size, could also be included to further enhance

optimization.
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A possibility for global feature set identification is suggested in this work. How-

ever, a more formal methodology should be employed to determine a true global

feature set. A true global feature set would distinguish all classes simultaneously,

with extremely high accuracy and great robustness, even in the presence of noise.

One possible direction for future work would be to combine all feature sets generated

for a specific data set, keeping only the features from those sets that are not dupli-

cated. This would obtain all the features that are good discriminators. However, this

particular solution has an inherent degree of complexity; it is possible that feature set

combination could increase the size of the resulting feature set such that it would no

longer be acceptable as a solution set.
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Appendix A. Wavelet Decomposition

A wavelet is a periodic oscillation similar to that of a cosine wave; however, it is

bounded and does not extend from minus to positive infinity. It starts at zero, in-

creases and decreases in amplitude, then returns to zero (Fig. A.1) [26]. This type of

wavelet is useful in engineering and mathematical constructs, because it enables us to

extract meaningful information from a signal. For example, if a wavelet is constructed

at a specific harmonic frequency, then when this wavelet is convolved with a signal

at specific intervals, it will resonate if that frequency is present in the signal. These

wavelets are used in wavelet transformation and decomposition to help isolate spe-

cific frequencies of interest. Wavelet transformations in the discrete time domain are

best understood by visualizing a signal being processed with both a high-pass filter

and a low-pass filter (Fig. A.2). This filter pair is determined by the specific wavelet

chosen. The high-pass information is considered the details; the low-pass informa-

tion is considered the approximations. Typically, the approximation coefficients are

considered most relevant; therefore, when dealing with wavelet transformations, only

the approximation coefficients are continually being filtered, as shown in Fig. A.3. In

this figure, g[n] represents the high-pass filter, and h[n] represents the low-pass filter.

After each filter process, a down-sampling occurs; this is denoted in the figure by the

circle with the down arrow and the numeral 2. The down-sampling is required to

maintain the same total number of dimensions as the original signal. Occasionally,

the detail (high-pass) information is equally as important as the approximations (low-

pass information); in these cases, wavelet decomposition is performed. The wavelet

decomposition is similar to the process for wavelet transformation; however, the de-

tail coefficients for each level are reprocessed with the filtering process, just as the

approximations. Fig. A.4 shows this process. The bins of the last level are called

leaves; due to the down-sampling, the leaves from this type of decomposition contain

half of the coefficients of the original signal filtered.

A two-dimensional wavelet decomposition has been introduced that works well

with images [3, 55]. This type of decomposition is computed differently than the
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Figure A.1: Example of a Morlet wavelet [91].

wavelet decomposition previously discussed; however, the basic concept still applies.

In the two-dimensional wavelet decomposition, three filter techniques are applied to

the detail filtering process, instead of one. The detail coefficients are filtered into hor-

izontal, vertical, and diagonal components. The two-dimensional wavelet transform is

shown in Fig. A.5. In this figure, cAn is the approximation coefficient for the nth level,

and cD
(β)
n is the detail coefficient for the nth level, where β is either the horizontal

(h), diagonal (d), or vertical (v) component [64]. The two-dimensional decomposi-

tion is then created by applying the approximation filters and detail filters to all the

coefficients of each level. The texture data set used in this work is processed with

the two-dimensional wavelet decomposition using the Daubechies wavelets, specifi-

cally the db8, as shown in Fig. A.6 [71]. The leaves are processed via an entropy

calculation for this work; however, many different types of statistical methods could

be used.
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Figure A.2: Example of a signal processed by a generic wavelet transformation.
The top portion is the high-pass filter; the bottom portion is the low-pass filter [63].
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Figure A.3: Example of a wavelet transformation, where h[n] represents the low-
pass filter, and g[n] represents the high-pass filter.
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Figure A.4: Example of a wavelet decomposition, where h[n] represents the low-pass
filter, and g[n] represents the high-pass filter.

A-3



S

cA2

cA1 cD1
(h) cD1

(h) cD1
(v)

cD2
(v)cD2

(d)cD2
(h)

Figure A.5: Example of a two-dimensional wavelet transform, where cAn is the

approximation coefficient for the nth level, and cD
(β)
n is the detail coefficient for the

nth level. β is either the horizontal (h), diagonal (d), or vertical (v) component [64].

Figure A.6: Daubechies wavelet of the 8th order, where a.) is the wavelet function,
b.) is the scaling function, c.) is the digital low-pass filter, and d.) is the digital
high-pass filter [71].
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